Natural

Language

o1V
-
‘r—
n
n
)
O
O
L -
al

Yue Zhang

Westlake University

£

T

& 7 K

ne NLP

Chapter 3

Feature Vector

Contents NP NLP

* 3.1 Representing Documents in Vector Spaces

. 3 P \WestlakeNLP
Review Naive Bayes

P(cld) = P(c) - Hp(wm

WEC

log P(c|d) = logP(c) + Z log P(w|c)

WEC

Words as features

@
(@ @ log Pw[<)

finance
topic

sports
topic

ne NLP
Feature vectors

"log P(goal | sports)]
()] log P(fans | sports)
- _ fz - E
?=1: Ospores = log P(stock | sports)
iy log P(loan | sports)
| log P(CEO | sports) |
f,=#Hgoaled

log P(c = sports | d) = %Spo,ﬂts . @ + log P(c = sports)

WP \WestlakeNLP
Vector Space Model

Mapping documents to vectors

(unstructured texts into mathematical structures)

s 2 high dimensional vector space

= Mapping documents into points

= coordinates represent importance of words

: np
Vector representation of documents — WestlakeNLP

‘ Features | dy | do | d3 [dy |
d, = “Tim bought w; =“a” 1[1]0]2
a book.” wy =“ah” 010 1 0
W1001 =“book” 1 | 0 1
N .

d, = “Tim is reading w3017 =“bought” | 1 | 0 | 0 | 0
a book.” w2100 ="boy” O] 0071
W3400 :“I” O 0 1 1
W4400 ="ig” 0 il 0 0

d; = “ah, I know -
Tim.” w5002 =" know” 010|170
w6013 I“IC&.diIlg” 0 i O 1
d - llI saw a boy W7034 I“S&W” 0 O 0 1
* reading a book.” Weagp = T’ SESESE
W13200 =", 0O/ 0/]11]0
W13201 = - L | 0 0

(a) count-based vectors

L NLP
Sparse vectors document representation

* Vocabulary: V = {wy,w,, ..., wy |}

 Vector representation for document 4 :

5(d) — <f1rf21 "'iflVl)

A simple way to define f but with sparseness :

Count-based vectors (high-dimensional sparse vectors)

fi = #w; and ¥(d) = <#W1, Hws,..., #W‘V‘>

ne NLP
Stop words

 Frequent yet uninformative

« Common stop words in English

|a|the|on|of | with |about|and |in|at|to]"], |?|oh]. |

 Filter uninformative words
remove Stop Words from the vocabulary when mapping
documents to vectors

 Limitation

manually defined.

s NLP
TF-IDF vectors document representation

* Soft version of stop words in selecting useful words.

e Intuition — the more documents in which of words exists,
the less informative the word is.
* reduce the importance values of uninformative words

TF(wi,d;) TF(wy,d;) TF(wy,d;)

Ues—iaf (dj) = { DF(wy) ' DF(ws) =’ DF(w,))

= (T'F(w1,d;)IDF(w1), TF(wa,d;)IDF(w3),

.., TF(Wy,d;)IDF(w,))

10

ne NLP
TE-IDF vectors

Soft version of stop words in selecting useful words

« Term frequency (TF)

_ # {w;|w;€ d;}
#{w|lw e d;,weV}

* Document frequency (DF)

DF (w;) — #1dld ﬁli,wie d}

* Inverted document frequency (IDF) (with logarithm)

TF (Wz'7 dj)

| D
#{d|d € D,w;c d}

IDF (w;) = log

11

Vector representation of documents

“Tim bought
a book.”

“Tim is reading
a book.”

“ah, I know
Tim.”

“I saw a boy
reading a book.”

WP \WestlakeNLP

| Features | d1 | dg | d3 | d4 “ d1 | dg | dg | d4
wy ="a’ 1 10| 2| 0415|0415 0 0.83
wy =“ah” 0O|l0(1]0 0 0 2.0 0
w1001 ="“book” 1 {10 /110415 0.415 0 0.415
wo017 ="bought” 1 O[O0 O0 2.0 0 0 0
w2100 = "boy” 0|0([0]1 0 0 0 2.0
w3400 ="17 0|0 |1]1 0 0 1.0 1.0
Wyq00 ="18” 0|1[0]0 0 2.0 0 0
w5002 = know” O] 0([1]0 0 0 2.0 0
wgo1g = reading” | 0 [1 | 0 | 1 0 1.0 0 1.0
w7034 ="“saw” 00|01 0 0 0 2.0
wgq00 =“Tim” 1 (1|1 010415 0.415 | 0.415 0
W13200 =", 0|0 ([1]0 0 0 2.0 0
W13201 = . 0 i { 0 1.0 0 1.0 0

(a) count-based vectors

(b) TF-IDF vectors

Summary

Vector representation for document d
6(d) = <flaf2’° . ')f|V1>
* In count-based vectors, fi = #w; = TF(w;,d;)

TF(w;,d;
e In TF-IDF vectors, fi = %wz))

Feature extraction

« Mathematical abstraction: the process of transforming

document d into vector v(d)
 Count-based vectors: discrete features

 TF-IDF vectors: real-valued features

13

NLP

Hands on nP NLP

d,: Tim bought a book.
d, : Tim is reading a book.
ds : ah, Tim is Tim.
d, : I saw a boy reading a book.
* Create an index vocabulary of the words of the train
document set: _
wy =Tim
w, = bought

w, = reading

Hands on ne

Count-based document representation.

1. Import python modules pytorch , collections and math

import torch
from collections import Counter
import math

2. Load dataset and define the stop-words

documents = ["Tim bought a book .",
"Tim is reading a book .",

"ah , Tim is Tim .",
"I saw a boy reading a book ."]

stop_words = ['a', ".', ',"]

NLP

Hands on nP NLP

3. Clean stop-words and count word frequency

clean_docs []
word_count = Counter()
for doc in documents:
word_count.update([wd for wd in doc.strip().split(' ')
if wd not in stop_words])
clean_docs.append([wd for wd in doc.strip().split(' ")
if wd not in stop_words])

4. Build up the vocabulary

vocab = [word for word in word_count.keys()]

Hands on
Check the loaded data

print(clean_docs)

[[lTiml, 'bOUght', 'bOOk'],

['Tim', 'is', 'reading', 'book'],

[‘ah', 'Tim', 'is', 'Tim'],

['I', 'saw’, 'boy', 'reading’, 'book']]
Word count

print(word_count)

Counter({'Tim': 4, 'book': 3, 'is': 2, 'reading': 2,

WP \WestlakeNLP

"bought': 1, 'ah': 1, 'I': 1, 'saw': 1, 'boy': 1})

Vocabulary
print(vocab)

['Tim', 'bought', 'book', 'is',
'reading', 'ah', 'I', 'saw', 'boy']

17

Hands on

6. Count-based document representation

count_vec = torch.zeros(len(clean_docs), len(vocab))
for i in range(len(clean_docs)):
for j in range(len(vocab)):

count = 0
for word in clean_docs[i]:
if word == vocab[j]:

count += 1
count_vec[i][]j] = count

Result:

print(count_vec)

tensor([[1., 1.,
[1., o.,
255 80,
[0., O.,

v v o w .
OFRrRFRO
= v v .
RORO®
L T Y
OO0
L P
RPOO®
L Y
RPOOO
v v v .
RPOOd
[T — -1
—_— . .

ROR R

Is there a soft alternative ?

NLP

Hands on nP NLP

TF-IDF vectors calculation using python.

7. Count the number of documents that contain a certain

vocabulary word

doc_count = torch.ones(1, len(vocab))

for i in range(len(vocab)):
freq = ©
for doc in clean_docs:
if vocab[i] in doc:
freq += 1
doc_count[0@][1i] = freq

print(doc_count)

tensorlll23-; 1as 3., 2.5 2.5 1o, 1., 1., 1.11)

Hands on

8. Count the vocabulary words in each document

doc_len = torch.zeros(len(clean_docs), 1)
for i in range(len(clean_docs)):
doc_len[i][@] = len(clean_docs[i])

9. Calculate the term frequency

tf = count_vec/doc_len

Result:
print(tf)

tensor([[0.3333, ©.3333, 0.3333, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.2500, ©.0000, 0.2500, 0.2500, 0.2500,
0.0000, 0.0000, 0.0000, 0.0000],
[0.5000, ©.0000, 0.0000, ©.2500, 0.0000,
0.2500, 0.0000, 0.0000, 0.0000],
[0.0000, ©.0000, ©.2000, 0.0000, 0.2000,
0.0000, 0.2000, 0.2000, 0.2000]])

WP \WestlakeNLP

20

Hands on WP \WestlakeNLP

10. Calculate the inverted document frequency

idf = torch.log(torch.ones(len(documents),
len(vocab))*1len(documents)/doc_count)

Result:

print(idf)

tensor([[0.2877, 1.3863, ©.2877, 0.6931, 0.6931,
1.3863, 1.3863, 1.3863, 1.3863],
[0.2877, 1.3863, 0.2877, 0.6931, 0.6931,
1.3863, 1.3863, 1.3863, 1.3863],
[0.2877, 1.3863, 0.2877, 0.6931, 0.6931,
1.3863, 1.3863, 1.3863, 1.3863],
[0.2877, 1.3863, 0.2877, 0.6931, 0.6931,
1.3863, 1.3863, 1.3863, 1.3863]])

21

Hands on WP \WestlakeNLP

11. TF-IDF vector document representation

tfidf = tfxidf

print(tfidf)

tensor([[0.0959, 0.4621, 0.0959, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0719, 0.0000, 0.0719, ©.1733, 0.1733,
0.0000, 0.0000, 0.0000, 0.0000],
[0.1438, 0.0000, 0.0000, 0.1733, 0.0000,
0.3466, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0575, 0.0000, 0.1386,
9.0000, 0.2773, 0.2773, 0.2773]1])

22

Contents NP NLP

3.1.1 Clustering

23

Measure vector space distance WP westlakeNLP

unstructed texts
and NLP structures

—S — |vector space distance | == |semantic similarities

>

o

Euclidean distance

* measures the length of their difference |y —x"|

o 4 Cosine similarity

* measure the size of the angel 6

24

ne
Measure vector space distance NLP

=

X = (xlr X, "';xn> ? = <y1'y2’ ""yTl>

 Euclidean distance

dis™(3,5) = /(21— 92)? + (22— 92)? + - - + (T0 — u)?
* (Cosine distance

dis™(Z,y) = 1 — cos(,)

From cosine similarity

_ T1Y1 + T2Y2 + -+ TpYn
Vel a4+ talVit gty 2

Clustering L NLP

To find groups of vectors that stay relatively close to
each other, using measures of distance in vector space

(Euclidean distance as the metric)

26

Contents P NLP

3.1.2 K-Means Clustering

27

K-means clustering e NLP

[teratively assigns points to clusters based on their

distance to the centroids

Initialization: pre-specify the number of clusters k
randomly select k points as cluster centroids

Steps:
repeat:
a. assign each point to the cluster whose centroid is the closest;
b. reassign cluster centroids (by averaging points in each cluster);
until:
the cluster contents stabilize

K-means clustering e NLP

Algorithm 1: K-means.
Inputs: D = {#,¥s,...,Un}, K;
Initialization: clusters = [|, centroids = ||
for ke [l...K] do
clusters. APPEND([]);
centroids. APPEND(D[RANDOM(j € [1...N] and j ¢ centroids)));
repeat
clusters _old < clusters;
clusters < [|;
// assign points to clusters
forie[l1...N] do
¢; < argmin;DIST(D[:], centroids(j]);
clusters|c;]. APPEND(D[i]);
// calculate centroids
forke[l...K] do
| centroidsk] +— AVERAGE(clusters[k]);
until clusters = clusters old,
Outputs: clusters

29

K-means clustering ILP WestlakeNLP

2-Means
Documents

cluster 1 cluster 2

Tim bought a
book

Tim bought a Tim is reading | saw a boy : .
reading] bOOk ah' I know T”n

Tim is reading
a book
I saw a boy 3-Means
reading a book

cluster 1 cluster 2
ah, | know Tim et Bkt Tim is readi : .
Im bought a im is reading saw a boy .
book a book reading a book ah, I know Tim

30

Hands on ne

Calculate Euclidean distance and cosine distance using pytorch
For our documents [d,, d,, d3, d,], calculate their similarity using
torch.dist and torch.cosine_similarity

Compare the distance between d, and d, , to the distance
between d3 and d,, what you can see?

1. Assign the TF-IDF vector representation to the target documents

dl

= tfidf[0]
d2 = tfidf[1]
d4 = tfidf[3]

NLP

Hands on ne NLP

2. Calculate Euclidean distance using the pytorch module

dl_d2 = torch.dist(d1, d2)
dl_d4 = torch.dist(d1, d4)
Result:

print(dl_d2, di1_d4)

tensor(0.5242) tensor(0.6885)

3. Calculate cosine distance using the pytorch module

dl_d2 = torch.cosine_similarity(dl, d2, dim=0)
dl_d4 = torch.cosine_similarity(dl, d4, dim=0)
Result:

print(dl_d2, di_d4)

tensor(0.1079) tensor(0.0228) 32

Hands on

2-means and 3-means clustering using Scikit.learn

from sklearn.cluster import KMeans

km_cluster = KMeans(n_clusters=2,max_iter=300,n_init=40,
init="k-means++",n_jobs=-1)

result = km_cluster.fit predict(tfidf _matrix)

print("Predicting result for 2-means:",result)

Predicting result for 2-means: [1 1 0 1]

km_cluster = KMeans(n_clusters=3,max_iter=300,n_init=40,
init="k-means++",n_jobs=-1)
result = km_cluster.fit_predict(tfidf_matrix)

print("Predicting result for 3-means:",result)
Predicting result for 3-means: [0 © 1 2]

init : method for initialization, defaults to "k-means++".
n_init : number of time the k-means algorithm will be run
with different centroid seeds.

n_jobs : the number of jobs to use for the computation.

NLP

Contents P NLP

3.1.3 Classification

34

Clustering vs. classification

My emails
Travel Non-travel
Work d, d, ds d, ds
de d
dg dg dqiz dqi3 dq4

Leisure dqo dqi1 dqis dqe

NLP

Clustering vs. classification

A > el
o= —~Cluster1 cluster 2 -
N
A A x g \
/ X E A R
4 \ / $ 1
/4 \ 7 1
/ \] A\ \
; 4 o \
] \ classA IR A \
1 V) 1 I -
I] ! '
I
1 1 : B B :
Y .' -. -
\ 8 * h L B I
\\ " \ l’
\
L ;] classB . T
\ $ / : B /
\ ’ N8 & Y
\ 4 \ /
\ *B ﬁl \
N\ 7 N
N 7 ~
o T -~
Clustering vs classification.

36

NLP

. o L NLP
Clustering vs. classification

"log P(goal | sports)]
()] log P(fans | sports)
- _ fz - E
?=1: Ospores = log P(stock | sports)
iy log P(loan | sports)
| log P(CEO | sports) |
f,=#Hgoaled

log P(c = sports | d) = %Spo,ﬂts . @ + log P(c = sports)

Clustering vs. classification L NLP

* Clustering (unsupervised learning)
* Do not require manually labeled training data
 All words have equal importance in a document vector
» Difficult to ensure customized vector division
« Classification (supervised learning)
* Requires training data with manual class labels
* Pick up the important words for classification tasks

» Use model parameters to define space separation

Contents P NLP

3.1.4 Support Vector Machine

39

.« go . nE GAMBRIL
Vector space classification task -, e A

1 _——~cluster 1 cluster 2 +~ g
‘A \\ 7 \\
s * ﬁ N A o & A \
/ \ / A \
/ \ ! & \
:’I # \ lass A | J\‘A \
class 1
] vy \] & A
: '. ——— |
1 1 1 :
L &8 ! | = '
' 8 * i \ B !
\

\ 1 I
' 8] classB (9 T
\\ II \\ 8 &% II
\ B ﬁll \ I,
N v e ’

. _— g S g

Finding the hyperplane

40

Linear separability L NLP

« Hyperplane: linear shape in a high-dimensional vector space.

« 2-dimensional space: line

 3-dimensional space: plane

 dimension = 3: hyperplane
 Linear separable: labeled points have a hyperplane separation boundary
* Linear models : a balance between accuracy and complexity

* support vector machine

* perceptron algorithm

Support vector machine (SVM)

Definition: a linear model for binary
classification in vector space
Support vectors: points

closest to the separating hyperplane
Margins: Support vector distances to
the hyperplane
Training goal: find the hyperplane that

maximizes the margins

rlP

H, H, H,
®e
® ° ® //< -------- SVM hyperplane
& ° o< / ~=-==--7 Support vectors
Margins‘< ___________ <
<---jaNEas / |k ;O
\/ 0O
// O O
Oo

H1 does not separate the classes.
H2 does, but only with a small margin.
H3 separates them with the maximum margin.

42

NLP

SVM classifier L NLP
* Defining the hyperplane

wWio+b=0

* W is a normal vector perpendicular to the hyperplane
« Ononeside, W'D + b > 0; on the other side, W v + b < 0

» Distance between vectors to the hyperplane:

_ [W'i(x) + bl
Il

Parameterising the model L NLP

There is an infinite amount of (W, b) pairs to define each hyperplane
For one unique (W, b) pair, SVM chooses the scale according to training
data, requiring that ‘QTE (z,) + b‘ = 1 for all support vectors v(x;)

For any support vector ¥(x;) in the set of training examples, its distance

to the separating hyperplane is

ORI

]]

44

SVM classifier L' NLP

* Finding the hyperplane
The goal of SVM training is to find a hyperplane w'# + b = 0

2
|Iwl]”

that maximizes 2r =

such that y=+1/y=-1 resides on different sides of the hyperplane.
« Equivalent to minimizing %HW | |2

» Training objective

— .]‘ — | |
(Wsum, bsum) = arg min - ||| 2,

s.t. yi(wlv(z;) +b) > 1,forall (z;,v;) € D

45

Test scenarios

inputs x and a
feature mapping
function v(x)

a set of model

parameters (w,b)

if wTv(x)>0 if wT9(x)<o
classify x into classify x into
+1 -1

WP \WestlakeNLP

46

Contents NP NLP

3.1.5 Perceptron

a7

The perceptron algorithm L

 alinear model to find a value for (W, b)

such that y = SIGN (W’ ¥(x;) + b) for all training examples (x; ,y;)

Initialization: set Wto 0, bto 0

Steps:
repeat:
for each input x calculate a current output z
if the output y is different from the gold output z :
Adjust the model parameter w by
adding v(x)ify=+1
subtracting v(x) ify=-1
Adjust b by
adding 1if y = +1
subtracting 1if y =-1
until:
a certain iteration number is reached.

NLP

The perceptron algorithm

 Algorithm

WP \WestlakeNLP

Input: D = {(:I:i,yi)}li’il,yi € {-1,+1}
Initialization: & < 0;b < 0;1 < 0
repeat
for i € [1.N] do
z; + SIGN(&T v(x;) + b);
if z; # y; then
W &+ U(wi) X yi;
b+ b+ y;
t—t41;
until £ = T7

49

Perceptron update L NLP

* vector space interpretation

-
-

—
-
-

v(x;+)

(@ + V0)Tx) + (b + 1)=\

If the correct training example ¥ (x;") falls on the wrong side

of the hyperplane, the perceptron update changes the

normal vector W towards ¥(x;"), and changes b by 1. 0

Numerical Interpretation v NLP

Given a model (w, b).
The current instance x;"has @' x;" + b < 0.
The new model becomes (@ + ¥(x;"), b + 1) after the update.

The new score is
(@ +3GeH)) B +b+1 = @T3¢) + b) + (B(H))” + 1, which
is larger than the old score @’ ¥(x;") + b.

Thus x;” will be more likely on the positive side of the new

hyperplane.

Batch learning vs online learning AV NLP

* Batch learning algorithm
SVM defines a training objective over a full set of training data
* Online learning algorithm
Perceptron updates its parameters incrementally for each training

example

Contents P NLP

e 3.2 Multi-class Classification

53

ne NLP

Solutions towards multi-class classification

* One-vs-rest approaches
* a hyperplane separates out a particular class of document from the rest
 Pairwise approaches
* More principled solutions
* One linear model
* Two views
- vector space separation

- scoring function

Contents P NLP

* 3.2.1 Defining Output-based Features

55

np NLP
Solutions towards multi-class classification

 Vector space is separated into
correct output and incorrect £1
output subspaces.

* the ratio between the -
numbers of positive and ~ oC: 5

negative examples is

Constanﬂy (1:1CI-1). Multi-class classification (% and e are two documents, ¢, ¢,
and c; are three class labels. The gold label for % is ¢; and
the gold label for e is c,.)

Output-based features v NLP

Input-based feature vector : v(z)
Output-based feature vector : ¥(z,c)

NOTE : x — input, c — class
Cartesian product (count-based vector V(d) for example)
ﬁ(d) = (#Wl, Wy, ..., W|v|>
6(d7 C) a <#W1C17 #WZZCI, sy #W|V\C1

F#W1Cq, #W3Co, ..., #Wy|Co

#FW v Cic), FWvICicl - -y FWV|CC|)

57

Output-based features v NLP

* Document: Tim went to Amsterdam to meet Jason
» Label: Work
* Output-based features:

Tim|Work went|Work to|Work
1 1 2
Amsterdam|Work meet|Work Jason|Work

1 1 1

58

Contents P NLP

3.2.2 Multi-class SVM

59

Multi-class SVM L NLP

* Training examples: D = {(z;, ¢;) D

« Positive examples: V(x;, ¢;)
« Negative examples : V(x;,), where ¢ # c;

* Training objective:
. B Lo
@, b = argmin o |||
QTﬁ(xi, Cz') +b>1

t. foralli,z; € D
e L { for all ¢ # ¢;, & ¥ (zi,¢) + b < —1

« Test time find the class as arg max Gl v(z,c) +b
cE

60

Multi-class SVM P \WestlakeNLP

Training examples: [— Lz 8) f\ilf

Positive examples: V(x;, ¢;)

Negative examples : V(x;, ¢), where ¢ # ¢;

Training objective:
~ 7 . 1 w—p 2 L]
@,b = argmin 5 || Too strict?

[s.t.foralli,a:ieD{ @ U (zi,¢) +b>1]

for all ¢ # c;, & ¥ (zi,¢) + b < —1

 Test time find the class as arg max Gl v(z,c) +b
cE

61

ne NLP

Linear models as scoring functions

* In a score perspective:
score(z,c) = &’ v(x,c) +b
Given a test input x, the model finds the class label ¢

with the highest score as the output:

¢ = arg max score(z,c) = argmax @’ v(z,c) + b
ceC ceC

 Final form of multi-class SVM training objective
A L o2
W = arg min —||d||

8.%. (DT’J (:L',-, Ci) = QT6($i, C) = 1 forall c # C;

62

Contents P NLP

3.3.3 Multi-class Perceptron

63

Multi-class perceptron e NLP
* Algorithm 3.3

Input: D = (:I:i,(.fi)|;il, ¢ €C
Initialization: & < 0; t « 0;
repeat
foriec[l...N]do

2; < argmax, ! v(z;, z) ;

if 2; # c¢; then

| W W+ v(x;, ¢;) — v(xi, 2i);

tt+1;

il =14

 Goes through training examples multiple iterations
« update parameter vector by adding the feature vector of the correct

output and abstracting the feature vector of the incorrect prediction

64

Multi-class perceptron e NLP

Given a model w,

The current instance x;" has @ - ¥ (x;,z) > @ - ¥ (x;, ¢;)

The new model parameters become w + v (x;, ¢;) — v (x;, z) after the
update.

The new score difference

(5 + v (x;,¢;) — v (%, z)) cv(x;,z) — (5 + v (x;,¢;) — U (xl-,z)) - v(x;, ¢;)=
O(V (x;,2) =V (xi,¢1)) — (B (x3,2) — D (3, ¢))? < (D (3, 2) — ¥ (x5, ¢;))

More likely being correct.

Contents P NLP

 3.3.1 Discriminative Models and Features

66

ne NLP

Descriminative models

« Both SVM and perceptron are discriminative models
They work by differentiating positive examples and negative examples,
(for binary classification y=+1/y=-1; for multi-class classification c)
assigning higher scores to positive examples

* Naive Bayes is a generative model, calculating joint probabilities of inputs
and outputs

e All the three models are linear models

) - L NLP
Naive Bayes is a Linear Model too

"log P(goal | sports)]
()] log P(fans | sports)
- _ fz - E
?=1: Ospores = log P(stock | sports)
iy log P(loan | sports)
| log P(CEO | sports) |
f,=#Hgoaled

log P(c = sports | d) = %Spo,ﬂts . @ + log P(c = sports)

) - L NLP
Naive Bayes is a Linear Model too

{

log P(sports)
T 17 log P(goal | sports)
f; log P(fans | sports)

S
Il

f.z Hsports :
= log P(stock | sports)
). log P(loan | sports)

| log P(CEO | sports) |

f,=#goaled f,=1

- —

log P(c = sports | d) = Ospores - P

e . L NLP
Discriminative model vs. generative model

Generative models Discriminative models
Naive Bayes classifier SVMs

Perceptron

 Parameter types P(c), P(w | c) and parameter instances P(sports), P(goal | sports)
 Feature vectors are assembly of parameter instances. But we can add more
parameter types into our feature vectors
v(d, c) = (ch, Wy, ...,W|V|c) == v(d,c) = (cl,cz, .o, C|C]y W1C, W3, ...,W|V|c)
« Advantage of discriminative models:

using overlapping features, such as word and bigram features. "

L NLP
Bigram features

world cup abnormal return
world cup abnormal return
sports finance

Bigram features are useful for text classification, they offer
more specific information about text classes
Bigrams are sparser making the feature vector longer and

more sparse

71

Add bigram features WP \estlakeNLP

U(d) = <W1,W2 - ,W|V|,bi1,bi2, —_— abi|BI|>

As in the example from textbook, with bigram features, the

feature vector for the sentence “Tim bought a book" in Table 3.1 is
(f =w1=1, fo =wy=10,..., fioor =W1000= 1, ..., foo17r =
wo017=1,..., fas0 =Wsa00= 1, ..., f13200 =W13201= 1,...,
fivi+1 =bi1=0,..., fiy|+108 =bl1gg=1,...,
fivi+3650 =Plsgso= 1, ..., fiy|+4950 =blagso=1,...,
fivi+113525 =bingses=1,...)

bijos: a book

bisgso: book .

biyg50: bought a
biji3595: Tom bought

%
v(d, c) = <c1, C2y «ees Cc|y W1C, WG, oo, Wiy |C, bilc, bizc, '"'bi|B|C> .

Feature templates and instances np NLP

* Feature extraction:
A process of matching feature templates to output structures
and instantiating them into feature instances.
» Feature templates: similar to parameter type; in examples above,
there are three templates, namely ¢, wcand w;1w;c

 Feature instances: similar to parameter instance; e.g., c;, wic;

Contents P NLP

* 3.3.2 Dot-product Form of Linear Models

74

Dot-product form of linear models

A general form of a linear model :
* Given an input x, its score is computed by

Parameter vector (weight vector)

A

score(zx,c) =0 - ¢(x,c)

SN

Feature vector

rlP

75

NLP

Dot-product form of linear models L NLP

A general form of a linear model :
* Given an input x, its score is computed by

Parameter vector (weight vector)

A

score(z,c) = 0 - ¢(z,c)

SN

Feature vector

 Effectively same as having score(x,c) = H_C) . cf;(x).

76

Contents NP NLP

* 3.3.3 Separability and Generalizability

77

Separability and generalizability P NLP

« Feature engineering : the process of defining a useful set of features

* more feature reflect richer information

* better designed feature vectors allow better linear separability
+ Separability

* linear separable

* dataset can be largely linear separable given proper feature definitions
* Generalization

* overfitting

 underfitting

Contents NP NLP

79

* 3.3.4 Dealing with Non-linearly-separable data

8 GaNERIEGEP

>

Non-linearly-separable data

[
»

Multi-class classification (% , mand e are three documents,
1, ¢, and c;are three class labels. The gold label for * is ¢,

and the gold label for e is ¢,, and The gold label for mis c3)

80

, np NLP
Binary SVM

e Slack variables ¢
Y (w v(x) +b) = 1— ¢ for all (z;, ;)
+ Training objective
o ; | R—
(@,b) = arg{g}br)lc‘;& 1l
s.t. for all 7, y; ((ET'U(:UZ-) + b) =1-¢&.,§ >0

(W,b) = arg m1n Cz max(0,1 — y; (W 9(x;) + b)) + —||W||

81

, np NLP
Multi-class SVM

* Training objective with slack variables :

D)

N
— arg min §y\e|12 1= 0 (Z gi)
0 =1
s.t. for all (z;,¢;) € D:
6 ¢ (zici)=0-¢(zi,c) +1—&,c # ;& >0

iy Ci
6 -

N

3 1 >012 > > > >

0 = argmjnz ||9|| + C(Z max(0,1 — 6 - p(x;,¢;) + Ig;aéx(@ - p(x;,¢)))
0 i

i=1

82

Perceptron

In the case where the training data are not
linearly separable, the perceptron can still
converge to a model that gives reasonably

small numbers of training errors

NLP

Summary L NLP

* Vector representations of documents

* Support vector machine and perceptron
algorithms for binary text classification

* Feature representations of input-output pairs

* Multi-class SVMs and perceptions

 Discriminative models vs generative models

« The importance of features to the separability of

training data and generalization to test data

