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Review Naïve Bayes

Words as features

𝑃 𝑐 𝑑 = 𝑃 𝑐 ·&
!∈#

𝑃(𝑤|𝑐)

log 𝑃 𝑐 𝑑 = log𝑃 𝑐 +/
!∈#

log 𝑃(𝑤|𝑐)

log 𝑃(𝑤|𝑐)
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Feature vectors

log 𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠 𝑑 = 𝜃⃗$%&'($ 7 𝛷 + log𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠

𝛷 =

f)
f*
⋮
f +

𝜃⃗$%&'($ =

log𝑃 𝑔𝑜𝑎𝑙 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑓𝑎𝑛𝑠 𝑠𝑝𝑜𝑟𝑡𝑠)

⋮
log 𝑃 𝑠𝑡𝑜𝑐𝑘 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑙𝑜𝑎𝑛 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 CEO 𝑠𝑝𝑜𝑟𝑡𝑠)

f) = # goal ∈ 𝑑
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Vector Space Model

Mapping documents to vectors

(unstructured texts into mathematical structures)
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Vector representation of documents

𝑑) = “Tim bought 
a book.”

𝑑* = “Tim is reading
a book.”

𝑑, = “ah, I know 
Tim.”

𝑑- = “I saw a boy
reading a book.”



8

Sparse vectors document representation

• Vocabulary: 𝑉 = {𝑤), 𝑤*, … , 𝑤 + }

• Vector representation for document d :

𝑣⃗ 𝑑 = ⟨𝑓), 𝑓*, … , 𝑓+ ⟩

A simple way to define f but with sparseness :
Count-based vectors (high-dimensional sparse vectors)



9

Stop words

• Frequent yet uninformative

• Common stop words in English
∣a ∣ the ∣on ∣of ∣with ∣about ∣and ∣ in ∣at ∣ to ∣" ∣, ∣?∣oh ∣ . ∣

• Filter uninformative words

remove Stop Words from the vocabulary when mapping 

documents to vectors

• Limitation

manually defined.
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TF-IDF vectors document representation

• Soft version of stop words in selecting useful words.

• Intuition — the more documents in which of words exists, 

the less informative the  word is.

• reduce the importance values of uninformative words
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TF-IDF vectors

Soft version of stop words in selecting useful words

• Term frequency (TF)

• Document frequency (DF)

• Inverted document frequency (IDF) (with logarithm)
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Vector representation of documents

𝑑) = “Tim bought 
a book.”

𝑑* = “Tim is reading
a book.”

𝑑, = “ah, I know 
Tim.”

𝑑- = “I saw a boy
reading a book.”
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Summary
Vector representation for document d

• In count-based vectors, 

• In TF-IDF vectors, 

Feature extraction

• Mathematical abstraction: the process of transforming 

document d into vector 𝒗(𝑑)

• Count-based vectors: discrete features

• TF-IDF vectors: real-valued features
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A case study on a tiny corpora

𝑑): Tim bought a book.

𝑑* : Tim is reading a book.

𝑑, : ah, Tim is Tim.

𝑑- : I saw a boy reading a book.

• Create an index vocabulary of the words of the train 

document set:

Hands on

𝑉 =

𝑤! = 𝑇𝑖𝑚
𝑤" = 𝑏𝑜𝑢𝑔ℎ𝑡
𝑤# = 𝑏𝑜𝑜𝑘

𝑤$ = 𝑟𝑒𝑎𝑑𝑖𝑛𝑔
…

* Certain stop words were ignored
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Python practice 1

Count-based document representation.

1. Import python modules pytorch , collections and math

Hands on

2. Load dataset and define the stop-words
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3. Clean stop-words and count word frequency

Hands on

4. Build up the vocabulary
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Check the loaded data

Hands on

Vocabulary

Word count
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6. Count-based document representation

Hands on

Result:

Is there a soft alternative ?
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Python practice 2

TF-IDF vectors calculation using python.

7. Count the number of documents that contain a certain

vocabulary word

Hands on

* Problem set succeeded from python practice 1 
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8. Count the vocabulary words in each document

Hands on

Result:

9. Calculate the term frequency
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10. Calculate the inverted document frequency

Hands on

Result:
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11. TF-IDF vector document representation

Hands on
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Measure vector space distance



25

Measure vector space distance

• Euclidean distance

• Cosine distance

From cosine similarity

𝑋 = 𝑥), 𝑥*, … , 𝑥. 𝑌 = 𝑦), 𝑦*, … , 𝑦.



26

Clustering

To find groups of vectors that stay relatively close to 

each other, using measures of distance in vector space 

(Euclidean distance as the metric)



27

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2  K-Means Clustering

• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data



28

K-means clustering

Iteratively assigns points to clusters based on their 

distance to the centroids

Initialization: pre-specify the number of clusters 𝑘
randomly select 𝑘 points as cluster centroids 

Steps: 
repeat: 

a. assign each point to the cluster whose centroid is the closest;
b. reassign cluster centroids (by averaging points in each cluster);

until: 
the cluster contents stabilize 
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K-means clustering



30

K-means clustering

Documents
2-Means

3-Means
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Python practice 3

Calculate Euclidean distance and cosine distance using pytorch

For our documents [𝑑!, 𝑑", 𝑑#, 𝑑$], calculate their similarity using 
torch.dist and torch.cosine_similarity

Compare the distance between 𝑑! and 𝑑" , to the distance 

between 𝑑# and 𝑑$, what you can see?
1. Assign the TF-IDF vector representation to the target documents

Hands on

* Problem set succeeded from python practice 1 
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2. Calculate Euclidean distance using the pytorch module

Hands on

Result:

Result:

3. Calculate cosine distance using the pytorch module
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K-means clustering with python

2-means and 3-means clustering using Scikit.learn

Hands on

init : method for initialization, defaults to "k-means++".

n_init : number of time the k-means algorithm will be run

with different centroid seeds.

n_jobs : the number of jobs to use for the computation.
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Clustering vs. classification

My emails

Travel Non-travel

Work

Leisure

𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 𝒅𝟓
𝒅𝟔 𝒅𝟕

𝒅𝟖 𝒅𝟗
𝒅𝟏𝟎 𝒅𝟏𝟏

𝒅𝟏𝟐 𝒅𝟏𝟑 𝒅𝟏𝟒
𝒅𝟏𝟓 𝒅𝟏𝟔
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Clustering vs. classification

Clustering vs classification.
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Clustering vs. classification

log 𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠 𝑑 = 𝜃⃗$%&'($ 7 𝛷 + log𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠

𝛷 =

f)
f*
⋮
f +

𝜃⃗$%&'($ =

log𝑃 𝑔𝑜𝑎𝑙 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑓𝑎𝑛𝑠 𝑠𝑝𝑜𝑟𝑡𝑠)

⋮
log 𝑃 𝑠𝑡𝑜𝑐𝑘 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑙𝑜𝑎𝑛 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 CEO 𝑠𝑝𝑜𝑟𝑡𝑠)

f) = # goal ∈ 𝑑
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Clustering vs. classification

• Clustering (unsupervised learning) 

• Do not require manually labeled training data

• All words have equal importance in a document vector

• Difficult to ensure customized vector division 

• Classification (supervised learning) 

• Requires training data with manual class labels 

• Pick up the important words for classification tasks 

• Use model parameters to define space separation
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Vector space classification task

Finding the hyperplane
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Linear separability

• Hyperplane: linear shape in a high-dimensional vector space.

• 2-dimensional space: line

• 3-dimensional space: plane

• dimension ≥ 3: hyperplane

• Linear separable: labeled points have a hyperplane separation boundary

• Linear models : a balance between accuracy and complexity

• support vector machine

• perceptron algorithm



Support vectors

SVM hyperplane

Margins
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Support vector machine (SVM)

• Definition: a linear model for binary 

classification in vector space

• Support vectors: points

closest to the separating hyperplane

• Margins: Support vector distances to

the hyperplane

• Training goal: find the hyperplane that

maximizes the margins
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SVM classifier
• Defining the hyperplane

• 𝑤 is a normal vector perpendicular to the hyperplane

• On one side, 𝑤/𝑣⃗ + 𝑏 > 0; on the other side, 𝑤/𝑣⃗ + 𝑏 < 0

• Distance between vectors to the hyperplane:

𝑟 =
𝑤/𝑣⃗(𝑥) + 𝑏

𝑤

𝑤/𝑣⃗ + 𝑏 = 0
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Parameterising the model

• There is an infinite amount of (𝑤, 𝑏) pairs to define each hyperplane

• For one unique (𝑤, 𝑏) pair, SVM chooses the scale according to training 

data, requiring that for all support vectors 𝑣⃗(𝑥/)

• For any support vector 𝑣⃗(𝑥/) in the set of training examples, its distance 

to the separating hyperplane is
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SVM classifier
• Finding the hyperplane

The goal of SVM training is to find a hyperplane 𝑤/𝑣⃗ + 𝑏 = 0

that maximizes 2𝑟 = *
!

, 

such that y=+1/y=-1 resides on different sides of the hyperplane. 

• Equivalent to minimizing )
*
𝑤 *

• Training objective
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Test scenarios
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The perceptron algorithm
• a linear model to find a value for (𝑤 , 𝑏) 

such that y = SIGN (𝑤/𝑣⃗(𝑥0) + 𝑏) for all training examples (𝑥0 , 𝑦0 )
Initialization: set𝑤 to 0 , b to 0

Steps: 
repeat: 

for each input 𝑥 calculate a current output 𝑧
if the output 𝑦 is different from the gold output 𝑧 :

Adjust the model parameter 𝑤 by
adding 𝑣⃗(𝑥) if 𝑦 = +1
subtracting 𝑣⃗(𝑥) if 𝑦 = -1

Adjust b by
adding 1if 𝑦 = +1
subtracting 1 if 𝑦 = -1

until: 
a certain iteration number is reached.
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The perceptron algorithm

• Algorithm

X
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Perceptron update
• vector space interpretation

If the correct training example 𝑣⃗(𝑥01) falls on the wrong side 

of the hyperplane, the perceptron update changes the 

normal vector 𝑤 towards 𝑣⃗(𝑥01), and changes b by 1.
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Numerical Interpretation

• Given a model 𝜔, 𝑏 .

• The current instance 𝑥#$has 𝜔%𝑥#$ + 𝑏 < 0. 

• The new model becomes 𝜔+ 𝑣⃗(𝑥#$), 𝑏 + 1 after the update. 

• The new score is 

𝜔+ 𝑣⃗ 𝑥#$
%𝑣⃗ 𝑥#$ + 𝑏 + 1 = 𝜔%𝑣⃗ 𝑥#$ + 𝑏 + 𝑣⃗ 𝑥#$

& + 1, which 

is larger than the old score 𝜔%𝑣⃗ 𝑥#$ + 𝑏. 

• Thus 𝑥#$ will be more likely on the positive side of the new 

hyperplane.
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Batch learning vs online learning

• Batch learning algorithm

SVM defines a training objective over a full set of training data

• Online learning algorithm

Perceptron updates its parameters incrementally for each training 

example
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Solutions towards multi-class classification

• One-vs-rest approaches

• a hyperplane separates out a particular class of document from the rest

• Pairwise approaches

• More principled solutions

• One linear model

• Two views

- vector space separation

- scoring function
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Solutions towards multi-class classification

c!

c"
c#

c"

c# c!

Multi-class classification (★ and ● are two documents, c1 , c2 

and c3 are three class labels. The gold label for ★ is c1 and

the gold label for ● is c2.)

• Vector space is separated into 

correct output and incorrect 

output subspaces.

• the ratio between the 

numbers of positive and 

negative examples is 

constantly (1 : |C| - 1).
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Output-based features

Input-based feature vector :

Output-based feature vector :

NOTE : x – input, c – class

Cartesian product (count-based vector v(𝑑) for example) 

𝑣⃗ 𝑑 = ⟨#𝑤), 𝑤*, … , 𝑤|3|⟩
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Output-based features

• Document: Tim went to Amsterdam to meet Jason

• Label: Work

• Output-based features:
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Multi-class SVM

• Training examples: 

• Positive examples: v(𝑥0 , 𝑐0)

• Negative examples : v(𝑥0 , 𝒄), where 𝒄 ≠ 𝑐0

• Training objective:

• Test time find the class as



61

Multi-class SVM

• Training examples: 

• Positive examples: v(𝑥0 , 𝑐0)

• Negative examples : v(𝑥0 , 𝒄), where 𝒄 ≠ 𝑐0

• Training objective:

• Test time find the class as

Too strict?
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Linear models as scoring functions

• In a score perspective:

Given a test input 𝑥, the model finds the class label ]c

with the highest score as the output:

• Final form of multi-class SVM training objective



63

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2  K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data



64

Multi-class perceptron

• Goes through training examples multiple iterations

• update parameter vector by adding the feature vector of the correct 

output and abstracting the feature vector of the incorrect prediction 

• Algorithm 3.3
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Multi-class perceptron

• Given a model 𝜔,

• The current instance 𝑥#$ has𝜔 / 𝑣⃗ 𝑥#, 𝑧 > 𝜔 / 𝑣⃗ 𝑥#, 𝑐#
• The new model parameters become 𝜔+ 𝑣⃗ 𝑥#, 𝑐# − 𝑣⃗ 𝑥#, 𝑧 after the 

update. 

• The new score difference

𝜔+ 𝑣⃗ 𝑥#, 𝑐# − 𝑣⃗ 𝑥#, 𝑧 / 𝑣 𝑥#, 𝑧 − 𝜔 + 𝑣⃗ 𝑥#, 𝑐# − 𝑣⃗ 𝑥#, 𝑧 / 𝑣 𝑥#, 𝑐# =

𝜔 𝑣⃗ 𝑥#, 𝑧 − 𝑣⃗ 𝑥#, 𝑐# − (𝑣⃗ 𝑥#, 𝑧 − 𝑣⃗ 𝑥#, 𝑐# )& < 𝜔 𝑣⃗ 𝑥#, 𝑧 − 𝑣⃗ 𝑥#, 𝑐#
• More likely being correct.
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Descriminative models

• Both SVM and perceptron are discriminative models

They work by differentiating positive examples and negative examples,

(for binary classification y=+1/y=-1; for multi-class classification c)

assigning higher scores to positive examples

• Naïve Bayes is a generative model, calculating joint probabilities of inputs 

and outputs

• All the three models are linear models
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Naïve Bayes is a Linear Model too

log 𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠 𝑑 = 𝜃⃗$%&'($ 7 𝛷 + log𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠

𝛷 =

f)
f*
⋮
f +

𝜃⃗$%&'($ =

log𝑃 𝑔𝑜𝑎𝑙 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑓𝑎𝑛𝑠 𝑠𝑝𝑜𝑟𝑡𝑠)

⋮
log 𝑃 𝑠𝑡𝑜𝑐𝑘 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑙𝑜𝑎𝑛 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 CEO 𝑠𝑝𝑜𝑟𝑡𝑠)

f) = # goal ∈ 𝑑
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Naïve Bayes is a Linear Model too

log 𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠 𝑑 = 𝜃⃗$%&'($ 7 𝛷

𝛷 =

𝟏
f)
f*
⋮
f +

𝜃⃗$%&'($ =

log𝑃(𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑔𝑜𝑎𝑙 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑓𝑎𝑛𝑠 𝑠𝑝𝑜𝑟𝑡𝑠)

⋮
log 𝑃 𝑠𝑡𝑜𝑐𝑘 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑙𝑜𝑎𝑛 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 CEO 𝑠𝑝𝑜𝑟𝑡𝑠)

f) = # goal ∈ 𝑑 f4=1
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Discriminative model vs. generative model

• Parameter types P(c), P(w|c) and parameter instances P(sports), P(goal|sports)

• Feature vectors are assembly of parameter instances. But we can add more 

parameter types into our feature vectors

𝑣⃗ 𝑑, 𝑐 = 𝑤)𝑐, 𝑤*𝑐, … , 𝑤 + 𝑐 =⇒ 𝑣⃗ 𝑑, 𝑐 = 𝑐), 𝑐*, … , 𝑐 5 , 𝑤)𝑐, 𝑤*𝑐, … , 𝑤 + 𝑐

• Advantage of discriminative models:

using overlapping features, such as word and bigram features.
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Bigram features

• Bigram features are useful for text classification, they offer 

more specific information about text classes

• Bigrams are sparser making the feature vector longer and 

more sparse
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Add bigram features

As in the example from textbook, with bigram features, the 

feature vector for the sentence “Tim bought a book" in Table 3.1 is

𝑣⃗ 𝑑, 𝑐 = 𝑐), 𝑐*, … , 𝑐 5 , 𝑤)𝑐, 𝑤*𝑐, … , 𝑤 + 𝑐, 𝑏0!𝑐, 𝑏0"𝑐, … , 𝑏0 # 𝑐
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Feature templates and instances

• Feature extraction:

A process of matching feature templates to output structures

and instantiating them into feature instances.

• Feature templates: similar to parameter type; in examples above,

there are three templates, namely c, wc and wi-1wic

• Feature instances: similar to parameter instance; e.g., c2, w1c1
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Dot-product form of linear models

A general form of a linear model :

• Given an input 𝑥, its score is computed by

Parameter vector (weight vector)

Feature vector
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Dot-product form of linear models

A general form of a linear model :

• Given an input 𝑥, its score is computed by

Parameter vector (weight vector)

Feature vector

• Effectively same as having 𝑠𝑐𝑜𝑟𝑒 𝑥, 𝑐 = 𝜃' / 𝜙 𝑥 .
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Separability and generalizability

• Feature engineering : the process of defining a useful set of features

• more feature reflect richer information

• better designed feature vectors allow better linear separability

• Separability

• linear separable

• dataset can be largely linear separable given proper feature definitions

• Generalization

• overfitting

• underfitting
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Non-linearly-separable data

Multi-class classification (★ , and ● are three documents,

c1 , c2 and c3 are three class labels. The gold label for ★ is c1

and the gold label for ● is c2, and The gold label for is c3 )

c1

c1c1
c2

c3

c2

c2

c3
c3
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Binary SVM

• Slack variables 𝜉

• Training objective

𝑤, 𝑏 = arg min
(1,3)

𝐶-
5

max 0,1 − 𝑦5 𝑤6 𝑣⃗ 𝑥5 + 𝑏 +
1
2

𝑤
"
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Multi-class SVM

• Training objective with slack variables :

8⃗𝜃 = argmin
7

1
2 𝜃⃗

"
+𝐶(-

58!

9

max(0,1 − 𝜃⃗ ⋅ 𝜙 𝑥5 , 𝑐5 +max:;:%
(𝜃⃗ ⋅ 𝜙 𝑥5 , 𝑐 ) )



83

Perceptron

In the case where the training data are not 

linearly separable, the perceptron can still 

converge to a model that gives reasonably 

small numbers of training errors
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Summary

• Vector representations of documents

• Support vector machine and perceptron 

algorithms for binary text classification

• Feature representations of input-output pairs

• Multi-class SVMs and perceptions

• Discriminative models vs generative models

• The importance of features to the separability of 

training data and generalization to test data


