

Natural Language Processing

Yue Zhang Westlake University

Chapter 3

Feature Vector

Contents

• 3.1 Representing Documents in Vector Spaces

- 3.1.1 Clustering
- 3.1.2 K-Means Clustering
- 3.1.3 Classification
- 3.1.4 Support Vector Machine
- 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

Review Naïve Bayes

$$P(c|d) = P(c) \cdot \prod_{w \in c} P(w|c)$$
$$\log P(c|d) = \log P(c) + \sum_{w \in c} \log P(w|c)$$

Words as features

Feature vectors

$$\vec{\Phi} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_{|V|} \end{bmatrix} \qquad \vec{\theta}_{sports} = \begin{bmatrix} \log P(goal \mid sports) \\ \log P(fans \mid sports) \\ \vdots \\ \log P(stock \mid sports) \\ \log P(loan \mid sports) \\ \log P(CEO \mid sports) \end{bmatrix}$$

 $\mathbf{f}_1 = \# \operatorname{goal} \in d$

$$\log P(c = sports \mid d) = \vec{\theta}_{sports} \cdot \vec{\phi} + \log P(c = sports)$$

Vector Space Model

Mapping documents to vectors

(unstructured texts into mathematical structures)

Vector representation of documents

- d_1 = "Tim bought a book."
- d₂ = "Tim is reading a book."
- d_3 = "ah, I know Tim."
- *d*₄ = "I saw a boy reading a book."

Features	d_1	d_2	d_3	d_4
$w_1 = a$	1	1	0	2
$w_2 =$ "ah"	0	0	1	0

				• • •
$w_{1001} =$ "book"	1	1	0	1
$w_{2017} =$ "bought"	1	0	0	0
$w_{2100} = "boy"$	0	0	0	1
$w_{3400} = "I"$	0	0	1	1
$w_{4400} =$ "is"	0	1	0	0

				•••
$\omega_{5002} =$ "know"	0	0	1	0
$w_{6013} =$ "reading"	0	1	0	1
$w_{7034} = "saw"$	0	0	0	1
$w_{8400} = "Tim"$	1	1	1	0

				••
$w_{13200} = ","$	0	0	1	0
$w_{13201} = "."$	1	0	1	0

(a) count-based vectors

. . .

WestlakeNLP

WestlakeNLP

Sparse vectors document representation

- Vocabulary: $V = \{w_1, w_2, ..., w_{|V|}\}$
- Vector representation for document *d* :

 $\vec{v}(d) = \langle f_1, f_2, \dots, f_{|V|} \rangle$

A simple way to define f but with sparseness :

Count-based vectors (high-dimensional sparse vectors)

$$f_i = \# \mathbf{w}_i ext{ and } ec{v}(d) = ig\langle \# \mathbf{w}_1, \# \mathbf{w}_2, \dots, \# \mathbf{w}_{|V|} ig
angle$$

Stop words

- Frequent yet uninformative
- Common stop words in English

|a|the|on|of|with|about|and|in|at|to|"|,|?|oh|.|

• Filter uninformative words

remove Stop Words from the vocabulary when mapping

documents to vectors

• Limitation

manually defined.

TF-IDF vectors document representation

- Soft version of stop words in selecting useful words.
- Intuition the more documents in which of words exists, the less informative the word is.
- reduce the importance values of uninformative words

$$egin{aligned} ec{v}_{tf-idf}(d_j) &= \langle rac{TF(w_1,d_j)}{DF(w_1)}, rac{TF(w_2,d_j)}{DF(w_2)}, \dots, rac{TF(w_n,d_j)}{DF(w_n)}
angle \ &= \langle TF(\mathbf{w}_1,d_i)IDF(\mathbf{w}_1), TF(\mathbf{w}_2,d_i)IDF(\mathbf{w}_2), \ &\dots, TF(\mathbf{w}_n,d_i)IDF(\mathbf{w}_n)
angle \end{aligned}$$

WestlakeNLP

TF-IDF vectors

Soft version of stop words in selecting useful words

• Term frequency (TF)

$$TF\left(\mathbf{w}_{i},d_{j}
ight)=rac{\#\left\{\mathbf{w}_{i}ert\mathbf{w}_{i}\in d_{j}
ight\}}{\#\left\{\mathbf{w}ert\mathbf{w}\in d_{j},\mathbf{w}\in V
ight\}}$$

• Document frequency (DF)

$$DF\left(\mathbf{w}_{i}
ight)=rac{\#\left\{ d|d\in D,\mathbf{w}_{i}\in d
ight\} }{\leftert D
ightert }$$

• Inverted document frequency (IDF) (with logarithm)

$$IDF\left(\mathbf{w}_{i}
ight)=\lograc{\left|D
ight|}{\#\left\{d|d\in D,\mathbf{w}_{i}\in d
ight\}}$$

Vector representation of documents

- d_1 = "Tim bought a book."
- d_2 = "Tim is reading a book."
- *d*₃ = "ah, I know Tim."
- *d*₄ = "I saw a boy reading a book."

	100	. 41						
Features	d_1	d_2	d_3	d_4	d_1	d_2	d_3	d_4
$w_1 =$ "a"	1	1	0	2	0.415	0.415	0	0.83
$w_2 =$ "ah"	0	0	1	0	0	0	2.0	0
$w_{1001} =$ "book"	1	1	0	1	0.415	0.415	0	0.415
$w_{2017} =$ "bought"	1	0	0	0	2.0	0	0	0
$w_{2100} =$ "boy"	0	0	0	1	0	0	0	2.0
$w_{3400} = "I"$	0	0	1	1	0	0	1.0	1.0
$w_{4400} =$ "is"	0	1	0	0	0	2.0	0	0
				• • •				
$w_{5002} =$ "know"	0	0	1	0	0	0	2.0	0
$w_{6013} =$ "reading"	0	1	0	1	0	1.0	0	1.0
$w_{7034} =$ "saw"	0	0	0	1	0	0	0	2.0
$w_{8400} =$ "Tim"	1	1	1	0	0.415	0.415	0.415	0
$w_{13200} =$ ","	0	0	1	0	0	0	2.0	0
$w_{13201} = "."$	1	0	1	0	1.0	0	1.0	0

. . .

WestlakeNLP

(a) count-based vectors (b) TF-IDF vectors

WestlakeNLP

Summary

Vector representation for document d $ec{v}(d) = \left\langle f_1, f_2, \dots, f_{|V|}
ight
angle$

• In count-based vectors, $f_i = \#w_i = TF(w_i, d_j)$

• In TF-IDF vectors,
$$f_i = rac{TF(w_i,d_j)}{DF(w_i)}$$

Feature extraction

- Mathematical abstraction: the process of transforming document *d* into vector $\vec{v}(d)$
- Count-based vectors: discrete features
- TF-IDF vectors: real-valued features

WestlakeNLP

A case study on a tiny corpora

- d_1 : Tim bought a book.
- d_2 : Tim is reading a book.
- d_3 : ah, Tim is Tim.
- d_4 : I saw a boy reading a book.
- Create an index vocabulary of the words of the train

document set:

$$V = \begin{bmatrix} w_1 = Tim \\ w_2 = bought \\ w_3 = book \\ w_4 = reading \\ \dots \end{bmatrix}$$

* Certain stop words were ignored

Python practice 1

Count-based document representation.

1. Import python modules pytorch, collections and math

```
import torch
from collections import Counter
import math
```

2. Load dataset and define the stop-words

```
documents = ["Tim bought a book .",
    "Tim is reading a book .",
    "ah , Tim is Tim .",
    "I saw a boy reading a book ."]
stop_words = ['a', '.', ',']
```

WestlakeNLP

3. Clean stop-words and count word frequency

4. Build up the vocabulary

vocab = [word for word in word_count.keys()]

Check the loaded data

```
print(clean_docs)
[['Tim', 'bought', 'book'],
['Tim', 'is', 'reading', 'book'],
['ah', 'Tim', 'is', 'Tim'],
['I', 'saw', 'boy', 'reading', 'book']]
```

Word count

```
print(word_count)
Counter({'Tim': 4, 'book': 3, 'is': 2, 'reading': 2,
                          'bought': 1, 'ah': 1, 'I': 1, 'saw': 1, 'boy': 1})
```

Vocabulary

```
print(vocab)
['Tim', 'bought', 'book', 'is',
'reading', 'ah', 'I', 'saw', 'boy']
```


6. Count-based document representation

```
count_vec = torch.zeros(len(clean_docs), len(vocab))
for i in range(len(clean_docs)):
    for j in range(len(vocab)):
        count = 0
        for word in clean_docs[i]:
            if word == vocab[j]:
                count += 1
        count_vec[i][j] = count
```

Result:

```
print(count_vec)
tensor([[1., 1., 1., 0., 0., 0., 0., 0., 0.],
       [1., 0., 1., 1., 1., 0., 0., 0., 0.],
       [2., 0., 0., 1., 0., 1., 0., 0.],
       [0., 0., 1., 0., 1., 0., 1., 1.]])
```

Is there a soft alternative ?

Python practice 2

TF-IDF vectors calculation using python.

7. Count the number of documents that contain a certain

vocabulary word

doc_count = torch.ones(1, len(vocab))

```
for i in range(len(vocab)):
    freq = 0
    for doc in clean_docs:
        if vocab[i] in doc:
            freq += 1
    doc_count[0][i] = freq
```

```
print(doc_count)
```

```
tensor([[3., 1., 3., 2., 2., 1., 1., 1., 1.]])
```

* Problem set succeeded from python practice 1

8. Count the vocabulary words in each document

```
doc_len = torch.zeros(len(clean_docs), 1)
for i in range(len(clean_docs)):
        doc_len[i][0] = len(clean_docs[i])
```

9. Calculate the term frequency

```
tf = count_vec/doc_len
```

Result:

10. Calculate the inverted document frequency

Result:

WestlakeNLP

11. TF-IDF vector document representation

tfidf = tf*idf

print(tfidf)

tensor([[0.0959, 0.4621, 0.0959, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0719, 0.0000, 0.0719, 0.1733, 0.1733, 0.0000, 0.0000, 0.0000], [0.1438, 0.0000, 0.0000, 0.1733, 0.0000, 0.3466, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0575, 0.0000, 0.1386, 0.0000, 0.2773, 0.2773, 0.2773]])

Contents

3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

- 3.1.2 K-Means Clustering
- 3.1.3 Classification
- 3.1.4 Support Vector Machine
- 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

Measure vector space distance

WestlakeNLP

Measure vector space distance

$$\vec{X} = \langle x_1, x_2, \dots, x_n \rangle$$
 $\vec{Y} = \langle y_1, y_2, \dots, y_n \rangle$

• Euclidean distance

$$dis^{
m eu}(ec{x},ec{y}) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \dots + (x_n-y_n)^2}$$

Cosine distance

$$dis^{
m cos}(ec{x},ec{y}) = 1 - \cos(ec{x},ec{y})$$

From cosine similarity

$$\cos(ec{x},ec{y}) = rac{ec{x}\cdotec{y}}{ec{x}ec{ec{x}}ec{ec{y}}ec{ec{y}} = rac{x_1y_1+x_2y_2+\dots+x_ny_n}{\sqrt{x_1^2+x_2^2+\dots+x_n^2}\sqrt{y_1^2+y_2^2+\dots+y_n^2}}$$

Clustering

To find groups of vectors that stay relatively close to each other, using measures of distance in vector space (Euclidean distance as the metric)

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine
 - 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

K-means clustering

Iteratively assigns points to clusters based on their

distance to the centroids

Initialization: pre-specify the number of clusters *k* randomly select *k* points as cluster centroids

Steps:

repeat:

a. assign each point to the cluster whose centroid is the closest;b. reassign cluster centroids (by averaging points in each cluster);until:

the cluster contents stabilize

K-means clustering

Algorithm 1: K-means.

```
Inputs: D = {\vec{v}_1, \vec{v}_2, \dots, \vec{v}_N}, K;
Initialization: clusters = [], centroids = []
for k \in [1 \dots K] do
    clusters.Append([]);
    centroids. APPEND(D[RANDOM(j \in [1 \dots N] \text{ and } j \notin centroids)]);
repeat
    clusters old \leftarrow clusters;
    clusters \leftarrow [];
    // assign points to clusters
   for i \in [1 \dots N] do
        c_j \leftarrow \arg\min_j \text{DIST}(\text{D}[i], centroids[j]);
        clusters[c_i]. Append(D[i]);
    // calculate centroids
   for k \in [1 \dots K] do
        centroids[k] \leftarrow AVERAGE(clusters[k]);
until clusters = clusters_old;
Outputs: clusters
```

K-means clustering

30

Python practice 3

Calculate Euclidean distance and cosine distance using pytorch For our documents $[d_1, d_2, d_3, d_4]$, calculate their similarity using torch.dist and torch.cosine_similarity

Compare the distance between d_1 and d_2 , to the distance

between d_3 and d_4 , what you can see?

1. Assign the TF-IDF vector representation to the target documents

```
...
d1 = tfidf[0]
d2 = tfidf[1]
d4 = tfidf[3]
```

* Problem set succeeded from python practice 1

WestlakeNLP

2. Calculate Euclidean distance using the pytorch module

d1_d2 = torch.dist(d1, d2)
d1_d4 = torch.dist(d1, d4)

Result:

```
print(d1_d2, d1_d4)
```

```
tensor(0.5242) tensor(0.6885)
```

3. Calculate cosine distance using the pytorch module

```
d1_d2 = torch.cosine_similarity(d1, d2, dim=0)
d1_d4 = torch.cosine_similarity(d1, d4, dim=0)
```

Result:

print(d1_d2, d1_d4)

tensor(0.1079) tensor(0.0228)

WestlakeNLP

K-means clustering with python

2-means and 3-means clustering using Scikit.learn

init : method for initialization, defaults to "k-means++".

n_init : number of time the k-means algorithm will be run

with different centroid seeds.

n_jobs : the number of jobs to use for the computation.

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering

• 3.1.3 Classification

- 3.1.4 Support Vector Machine
- 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

Clustering vs. classification

My emails

	Travel	Non-travel
Work	$d_1 \ d_2 \ d_3$	$\begin{array}{c} d_4 \ d_5 \\ d_6 \ d_7 \end{array}$
Leisure	$egin{array}{ccc} d_8 & d_9 \ d_{10} & d_{11} \end{array}$	$d_{12} \ d_{13} \ d_{14} \ d_{15} \ d_{16}$

Clustering vs. classification

Clustering vs. classification

$$\vec{\Phi} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_{|V|} \end{bmatrix} \qquad \vec{\theta}_{sports} = \begin{bmatrix} \log P(goal \mid sports) \\ \log P(fans \mid sports) \\ \vdots \\ \log P(stock \mid sports) \\ \log P(loan \mid sports) \\ \log P(CEO \mid sports) \end{bmatrix}$$

 $\mathbf{f}_1 = \# \operatorname{goal} \in d$

$$\log P(c = sports \mid d) = \vec{\theta}_{sports} \cdot \vec{\phi} + \log P(c = sports)$$

Clustering vs. classification

- Clustering (unsupervised learning)
 - Do not require manually labeled training data
 - All words have equal importance in a document vector
 - Difficult to ensure customized vector division
- Classification (supervised learning)
 - Requires training data with manual class labels
 - Pick up the important words for classification tasks
 - Use model parameters to define space separation

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine
 - 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

Vector space classification task

Linear separability

WestlakeNLP

- **Hyperplane**: linear shape in a high-dimensional vector space.
 - 2-dimensional space: line
 - 3-dimensional space: plane
 - dimension \geq 3: hyperplane
- Linear separable: labeled points have a hyperplane separation boundary
- Linear models : a balance between accuracy and complexity
 - support vector machine
 - perceptron algorithm

Support vector machine (SVM)

- Definition: a linear model for binary classification in vector space
- Support vectors: points
 closest to the separating hyperplane
- Margins: Support vector distances to the hyperplane
- Training goal: find the hyperplane that maximizes the margins

H1 does not separate the classes.H2 does, but only with a small margin.H3 separates them with the maximum margin.

SVM classifier

• Defining the hyperplane

$$\vec{w}^T \vec{v} + b = 0$$

- \vec{w} is a normal vector perpendicular to the hyperplane
- On one side, $\vec{w}^T \vec{v} + b > 0$; on the other side, $\vec{w}^T \vec{v} + b < 0$
- Distance between vectors to the hyperplane:

$$r = \frac{|\vec{w}^T \vec{v}(x) + b|}{\|\vec{w}\|}$$

Parameterising the model

WestlakeNLP

- There is an infinite amount of (\vec{w}, b) pairs to define each hyperplane
- For one unique (\vec{w}, b) pair, SVM chooses the scale according to training data, requiring that $|\vec{\omega}^T \vec{v}(x_s) + b| = 1$ for all support vectors $\vec{v}(x_s)$
- For any support vector $\vec{v}(x_s)$ in the set of training examples, its distance to the separating hyperplane is

$$r=rac{\left|ec{\omega}^{T}ec{v}\left(x_{i}
ight)+b
ight|}{\left\|ec{\omega}
ight\|}=rac{1}{\left|\left|ec{w}
ight|
ight|}$$

SVM classifier

WestlakeNLP

• Finding the hyperplane

The goal of SVM training is to find a hyperplane $\vec{w}^T \vec{v} + b = 0$

that maximizes
$$2r = \frac{2}{||\vec{w}||}$$
,

such that y=+1/y=-1 resides on different sides of the hyperplane.

- Equivalent to minimizing $\frac{1}{2} ||\vec{w}||^2$
- Training objective

$$egin{aligned} & (ec{w}_{sum}, b_{sum}) = rg\minrac{1}{2}||ec{w}||^2, \ & s.t. \ \ y_i(ec{w}^Tec{v}(x_i)+b) \geq 1, ext{for all } (x_i, y_i) \in L. \end{aligned}$$

Test scenarios

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine

• 3.1.5 Perceptron

- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

The perceptron algorithm

• a linear model to find a value for (\vec{w}, b)

```
such that y = SIGN(\vec{w}^T \vec{v}(x_i) + b) for all training examples (x_i, y_i)
```

```
Initialization: set \vec{w} to \vec{0}, b to 0
Steps:
             repeat:
                    for each input x calculate a current output z
                    if the output y is different from the gold output z:
                           Adjust the model parameter \vec{w} by
                                 adding \vec{v}(x) if y = +1
                                 subtracting \vec{v}(x) if y = -1
                           Adjust b by
                                 adding 1 if y = +1
                                 subtracting 1 if y = -1
             until:
                    a certain iteration number is reached.
```

WestlakeNLP

The perceptron algorithm

WestlakeNLP

• Algorithm

Perceptron update

• vector space interpretation

If the correct training example $\vec{v}(x_i^+)$ falls on the wrong side of the hyperplane, the perceptron update changes the normal vector \vec{w} towards $\vec{v}(x_i^+)$, and changes *b* by 1.

Numerical Interpretation

- Given a model $(\vec{\omega}, b)$.
- The current instance x_i^+ has $\vec{\omega}^T x_i^+ + b < 0$.
- The new model becomes $(\vec{\omega} + \vec{v}(x_i^+), b + 1)$ after the update.
- The new score is

 $\left(\vec{\omega} + \vec{v}(x_i^+)\right)^T \vec{v}(x_i^+) + b + 1 = \left(\vec{\omega}^T \vec{v}(x_i^+) + b\right) + \left(\vec{v}(x_i^+)\right)^2 + 1, \text{ which}$ is larger than the old score $\vec{\omega}^T \vec{v}(x_i^+) + b$.

• Thus x_i^+ will be more likely on the positive side of the new hyperplane.

Batch learning vs online learning

• Batch learning algorithm

SVM defines a training objective over a full set of training data

• Online learning algorithm

Perceptron updates its parameters incrementally for each training example

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine
 - 3.1.5 Perceptron

• 3.2 Multi-class Classification

- 3.2.1 Defining Output-based Features
- 3.2.2 Multi-class SVM
- 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

Solutions towards multi-class classification

- One-vs-rest approaches
 - a hyperplane separates out a particular class of document from the rest
 - Pairwise approaches
- More principled solutions
 - One linear model
 - Two views
 - vector space separation
 - scoring function

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine
 - 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

U WestlakeNLP Solutions towards multi-class classification

- Vector space is separated into correct output and incorrect output subspaces.
- the ratio between the numbers of positive and negative examples is constantly (1 : |C| - 1).

Multi-class classification (\star and \bullet are two documents, c_1 , c_2 and c_3 are three class labels. The gold label for \star is c_1 and the gold label for \bullet is c_2 .) 56

Output-based features

WestlakeNLP

Input-based feature vector :

 $\vec{v}(x)$

Output-based feature vector : $\vec{v}(x, \mathbf{c})$

NOTE : x – input, c – class

Cartesian product (count-based vector $\vec{v}(d)$ for example)

$$\vec{v}(d) = \langle \# w_1, w_2, \dots, w_{|v|} \rangle$$

$$\vec{v}(d, \mathbf{c}) = \langle \# \mathbf{w}_1 \mathbf{c}_1, \# \mathbf{w}_2 \mathbf{c}_1, \dots, \# \mathbf{w}_{|V|} \mathbf{c}_1$$

$$\# \mathbf{w}_1 \mathbf{c}_2, \# \mathbf{w}_2 \mathbf{c}_2, \dots, \# \mathbf{w}_{|V|} \mathbf{c}_2$$

$$\dots$$

$$\# \mathbf{w}_{|V|} \mathbf{c}_{|C|}, \# \mathbf{w}_{|V|} \mathbf{c}_{|C|}, \dots, \# \mathbf{w}_{|V|} \mathbf{c}_{|C|}$$

Output-based features

- Document: Tim went to Amsterdam to meet Jason
- Label: Work
- Output-based features:

Tim Work	went Work	to Work
1	1	2
Amsterdam Work	meet Work	Jason Work
1	1	1

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine
 - 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM

- 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

Multi-class SVM

WestlakeNLP

- Training examples: $D = \{(x_i, c_i)\}_{i=1'}^N$
- Positive examples: $\vec{v}(x_i, c_i)$
- Negative examples : $\vec{v}(x_i, c)$, where $c \neq c_i$
- Training objective:

$$egin{aligned} \hat{\omega}, \hat{b} &= rg\min_{ec{w}, b} rac{1}{2} \|ec{\omega}\|^2 \ ext{s.t. for all } i, x_i \in D \left\{ egin{aligned} ec{\omega}^T ec{v} \left(x_i, c_i
ight) + b \geq 1 \ ext{ for all } \mathbf{c} &\neq c_i, ec{\omega}^T ec{v} \left(x_i, \mathbf{c}
ight) + b \geq -1 \end{aligned}
ight.$$

• Test time find the class as $\arg \max_{\mathbf{c} \in C} \vec{\omega}^T \vec{v}(x, \mathbf{c}) + b$

Multi-class SVM

WestlakeNLP

- Training examples: $D = \{(x_i, c_i)\}_{i=1}^N$
- Positive examples: $\vec{v}(x_i, c_i)$
- Negative examples : $\vec{v}(x_i, c)$, where $c \neq c_i$

$$\hat{\omega}, \hat{b} = rg\min_{ec{w}, b} rac{1}{2} \|ec{\omega}\|^2 \qquad extsf{Too strict?} \ extsf{s.t. for all } i, x_i \in D \left\{ egin{array}{c} ec{\omega}^T ec{v} \left(x_i, c_i
ight) + b \geq 1 \ extsf{for all } \mathbf{c}
eq c_i, ec{\omega}^T ec{v} \left(x_i, \mathbf{c}
ight) + b \leq -1 \end{array}
ight)$$

• Test time find the class as $\arg \max_{\mathbf{c} \in C} \vec{\omega}^T \vec{v}(x, \mathbf{c}) + b$

Linear models as scoring functions

WestlakeNLP

• In a score perspective:

$$score(x, \mathbf{c}) = ec{\omega}^T ec{v}(x, \mathbf{c}) + b$$

Given a test input x, the model finds the class label \hat{c} with the highest score as the output: $\hat{c} = \arg \max_{\mathbf{c} \in C} score(x, \mathbf{c}) = \arg \max_{\mathbf{c} \in C} \vec{\omega}^T \vec{v}(x, \mathbf{c}) + b$

• Final form of multi-class SVM training objective

$$egin{aligned} \hat{\hat{\omega}} &= rg\minrac{1}{2}\|ec{\omega}\|^2 \ ext{s.t.} \ ec{\omega}^Tec{v}\left(x_i,c_i
ight) - ec{\omega}^Tec{v}\left(x_i,\mathbf{c}
ight) \geq 1 ext{ for all } \mathbf{c}
eq c_i \end{aligned}$$

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine
 - 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

Multi-class perceptron

WestlakeNLP

• Algorithm 3.3

- Goes through training examples multiple iterations
- update parameter vector by adding the feature vector of the correct output and abstracting the feature vector of the incorrect prediction

Multi-class perceptron

- Given a model $\vec{\omega}$,
- The current instance x_i^+ has $\vec{\omega} \cdot \vec{v} (x_i, z) > \vec{\omega} \cdot \vec{v} (x_i, c_i)$
- The new model parameters become $\vec{\omega} + \vec{v} (x_i, c_i) \vec{v} (x_i, z)$ after the update.
- The new score difference

 $\left(\vec{\omega} + \vec{v} (x_i, c_i) - \vec{v} (x_i, z) \right) \cdot v(x_i, z) - \left(\vec{\omega} + \vec{v} (x_i, c_i) - \vec{v} (x_i, z) \right) \cdot v(x_i, c_i) =$ $\vec{\omega} \left(\vec{v} (x_i, z) - \vec{v} (x_i, c_i) \right) - \left(\vec{v} (x_i, z) - \vec{v} (x_i, c_i) \right)^2 < \vec{\omega} \left(\vec{v} (x_i, z) - \vec{v} (x_i, c_i) \right)$

• More likely being correct.

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine
 - 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features

• 3.3.1 Discriminative Models and Features

- 3.3.2 Dot-product Form of Linear Models
- 3.3.3 Separability and Generalizability
- 3.3.4 Dealing with Non-linearly-separable data

Descriminative models

- Both SVM and perceptron are discriminative models
 They work by differentiating positive examples and negative examples,
 (for binary classification y=+1/y=-1; for multi-class classification c)
 assigning higher scores to positive examples
- Naïve Bayes is a generative model, calculating joint probabilities of inputs and outputs
- All the three models are linear models

Naïve Bayes is a Linear Model too

$$\vec{\Phi} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_{|V|} \end{bmatrix} \qquad \vec{\theta}_{sports} = \begin{bmatrix} \log P(goal \mid sports) \\ \log P(fans \mid sports) \\ \vdots \\ \log P(stock \mid sports) \\ \log P(loan \mid sports) \\ \log P(CEO \mid sports) \end{bmatrix}$$

 $\mathbf{f}_1 = \# \operatorname{goal} \in d$

$$\log P(c = sports \mid d) = \vec{\theta}_{sports} \cdot \vec{\Phi} + \log P(c = sports)$$

Naïve Bayes is a Linear Model too

$$\vec{\Phi} = \begin{bmatrix} \mathbf{1} \\ \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_{|V|} \end{bmatrix} \qquad \vec{\theta}_{sports} = \begin{bmatrix} \log P(sports) \\ \log P(goal \mid sports) \\ \log P(fans \mid sports) \\ \vdots \\ \log P(stock \mid sports) \\ \log P(loan \mid sports) \\ \log P(CEO \mid sports) \end{bmatrix}$$

 $\mathbf{f}_1 = \# \operatorname{goal} \in d \quad \mathbf{f}_0 = \mathbf{1}$

$$\log P(c = sports \mid d) = \vec{\theta}_{sports} \cdot \vec{\Phi}$$

Discriminative model vs. generative model

Generative models	Discriminative models
Naïve Bayes classifier	SVMs
	Perceptron

- Parameter types P(c), P(w | c) and parameter instances P(sports), P(goal | sports)
- Feature vectors are assembly of parameter instances. But we can add more parameter types into our feature vectors

$$\vec{v}(d,c) = \langle w_1 c, w_2 c, \dots, w_{|V|} c \rangle \implies \vec{v}(d,c) = \langle c_1, c_2, \dots, c_{|C|}, w_1 c, w_2 c, \dots, w_{|V|} c \rangle$$

• Advantage of discriminative models:

using overlapping features, such as word and bigram features.

WestlakeNLP

Bigram features

- Bigram features are useful for text classification, they offer more specific information about text classes
- Bigrams are sparser making the feature vector longer and more sparse

Add bigram features

$$ec{v}(d) = \langle \mathbf{w}_1, \mathbf{w}_2 \ \dots, \mathbf{w}_{|V|}, \mathbf{b} \mathbf{i}_1, \mathbf{b} \mathbf{i}_2, \dots, \mathbf{b} \mathbf{i}_{|BI|}
angle$$

As in the example from textbook, with bigram features, the

feature vector for the sentence "Tim bought a book" in Table 3.1 is

$$egin{aligned} &\langle f_1 = & \mathbf{w}_1 = 1, f_2 = & \mathbf{w}_2 = 0, \dots, f_{1001} = & \mathbf{w}_{1000} = 1, \dots, f_{2017} = \ & \mathbf{w}_{2017} = 1, \dots, f_{8400} = & \mathbf{w}_{8400} = 1, \dots, f_{13201} = & \mathbf{w}_{13201} = 1, \dots, \ & f_{|V|+1} = & \mathbf{bi}_1 = 0, \dots, f_{|V|+108} = & \mathbf{bi}_{108} = 1, \dots, \ & f_{|V|+3650} = & \mathbf{bi}_{3650} = 1, \dots, f_{|V|+4950} = & \mathbf{bi}_{4950} = 1, \dots, \ & f_{|V|+113525} = & \mathbf{bi}_{113525} = 1, \dots \end{pmatrix} \end{aligned}$$

bi₁₀₈: a book **bi**₃₆₅₀: book . **bi**₄₉₅₀: bought a **bi**₁₁₃₅₂₅: Tom bought $\vec{v}(d,c) = \langle c_1, c_2, ..., c_{|C|}, w_1c, w_2c, ..., w_{|V|}c, b_{i_1}c, b_{i_2}c, ..., b_{i_{|B|}}c \rangle$

72
Feature templates and instances

• Feature extraction:

A process of matching feature templates to output structures and instantiating them into feature instances.

- Feature templates: similar to parameter type; in examples above, there are three templates, namely c, wc and w_{i-1}w_ic
- Feature instances: similar to parameter instance; e.g., c₂, w₁c₁

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine
 - 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

Dot-product form of linear models

A general form of a linear model :

• Given an input *x*, its score is computed by

Parameter vector (weight vector)

$$score(x, \mathbf{c}) = heta \cdot \phi(x, \mathbf{c})$$

Feature vector

Dot-product form of linear models

A general form of a linear model :

• Given an input *x*, its score is computed by

Parameter vector (weight vector)

$$score(x, \mathbf{c}) = heta \cdot \phi(x, \mathbf{c})$$

Feature vector

• Effectively same as having $score(x,c) = \overrightarrow{\theta_c} \cdot \overrightarrow{\phi}(x)$.

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine
 - 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

Separability and generalizability

WestlakeNLP

- Feature engineering : the process of defining a useful set of features
 - more feature reflect richer information
 - better designed feature vectors allow better linear separability
- Separability
 - linear separable
 - dataset can be largely linear separable given proper feature definitions
- Generalization
 - overfitting
 - underfitting

Contents

- 3.1 Representing Documents in Vector Spaces
 - 3.1.1 Clustering
 - 3.1.2 K-Means Clustering
 - 3.1.3 Classification
 - 3.1.4 Support Vector Machine
 - 3.1.5 Perceptron
- 3.2 Multi-class Classification
 - 3.2.1 Defining Output-based Features
 - 3.2.2 Multi-class SVM
 - 3.3.3 Multi-class Perceptron
- 3.3 Discriminative Models and Features
 - 3.3.1 Discriminative Models and Features
 - 3.3.2 Dot-product Form of Linear Models
 - 3.3.3 Separability and Generalizability
 - 3.3.4 Dealing with Non-linearly-separable data

Non-linearly-separable data

Multi-class classification (\bigstar , \blacksquare and \bullet are three documents, c_1, c_2 and c_3 are three class labels. The gold label for \bigstar is c_1 and the gold label for \bullet is c_2 , and The gold label for \blacksquare is c_3)

Binary SVM

• Slack variables ξ

$$y\left(ec{\omega}^Tec{v}(x)+b
ight)=1-\xi ext{ for all }(x_i,y_i)$$

• Training objective

$$\begin{aligned} (\vec{\omega}, b) &= \arg\min_{(\overline{\omega}, b)} C \sum_{i} \xi_{i} + \frac{1}{2} \|\vec{\omega}\|^{2} \\ \text{s.t. for all } i, y_{i} \left(\vec{\omega}^{T} \vec{v} \left(x_{i} \right) + b \right) = 1 - \xi_{i}, \xi_{i} \geq 0 \\ (\vec{w}, b) &= \arg\min_{(\overline{w}, b)} C \sum_{i} \max(0, 1 - y_{i} (\vec{w}^{T} \vec{v} \left(x_{i} \right) + b)) + \frac{1}{2} \left| |\vec{w}| \right|^{2} \end{aligned}$$

WestlakeNLP

Multi-class SVM

• Training objective with slack variables :

$$\hat{\vec{\theta}} = \arg\min_{\vec{\theta}} \frac{1}{2} \|\vec{\theta}\|^2 + C\left(\sum_{i=1}^N \xi_i\right)$$

s.t. for all $(x_i, c_i) \in D$:
 $\vec{\theta} \cdot \vec{\phi} (x_i, c_i) = \vec{\theta} \cdot \vec{\phi} (x_i, \mathbf{c}) + 1 - \xi_i, \mathbf{c} \neq c_i, \xi_i \ge 0$
 $\hat{\vec{\theta}} = \arg\min_{\vec{\theta}} \frac{1}{2} \left|\left|\vec{\theta}\right|\right|^2 + C\left(\sum_{i=1}^N \max(0, 1 - \vec{\theta} \cdot \vec{\phi}(x_i, c_i) + \max_{c \neq c_i}(\vec{\theta} \cdot \vec{\phi}(x_i, c))\right)$

Perceptron

In the case where the training data are not linearly separable, the perceptron can still converge to a model that gives reasonably small numbers of training errors

Summary

- Vector representations of documents
- Support vector machine and perceptron algorithms for binary text classification
- Feature representations of input-output pairs
- Multi-class SVMs and perceptions
- Discriminative models vs generative models
- The importance of features to the separability of training data and generalization to test data