
Natural
Language
Processing
Yue Zhang
Westlake University

Chapter 3

Feature Vector

2

3

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

4

Review Naïve Bayes

Words as features

𝑃 𝑐 𝑑 = 𝑃 𝑐 ·&
!∈#

𝑃(𝑤|𝑐)

log 𝑃 𝑐 𝑑 = log𝑃 𝑐 +/
!∈#

log 𝑃(𝑤|𝑐)

log 𝑃(𝑤|𝑐)

5

Feature vectors

log 𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠 𝑑 = 𝜃⃗$%&'($ 7 𝛷 + log𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠

𝛷 =

f)
f*
⋮
f +

𝜃⃗$%&'($ =

log𝑃 𝑔𝑜𝑎𝑙 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑓𝑎𝑛𝑠 𝑠𝑝𝑜𝑟𝑡𝑠)

⋮
log 𝑃 𝑠𝑡𝑜𝑐𝑘 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑙𝑜𝑎𝑛 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 CEO 𝑠𝑝𝑜𝑟𝑡𝑠)

f) = # goal ∈ 𝑑

6

Vector Space Model

Mapping documents to vectors

(unstructured texts into mathematical structures)

7

Vector representation of documents

𝑑) = “Tim bought
a book.”

𝑑* = “Tim is reading
a book.”

𝑑, = “ah, I know
Tim.”

𝑑- = “I saw a boy
reading a book.”

8

Sparse vectors document representation

• Vocabulary: 𝑉 = {𝑤), 𝑤*, … , 𝑤 + }

• Vector representation for document d :

𝑣⃗ 𝑑 = ⟨𝑓), 𝑓*, … , 𝑓+ ⟩

A simple way to define f but with sparseness :
Count-based vectors (high-dimensional sparse vectors)

9

Stop words

• Frequent yet uninformative

• Common stop words in English
∣a ∣ the ∣on ∣of ∣with ∣about ∣and ∣ in ∣at ∣ to ∣" ∣, ∣?∣oh ∣ . ∣

• Filter uninformative words

remove Stop Words from the vocabulary when mapping

documents to vectors

• Limitation

manually defined.

10

TF-IDF vectors document representation

• Soft version of stop words in selecting useful words.

• Intuition — the more documents in which of words exists,

the less informative the word is.

• reduce the importance values of uninformative words

11

TF-IDF vectors

Soft version of stop words in selecting useful words

• Term frequency (TF)

• Document frequency (DF)

• Inverted document frequency (IDF) (with logarithm)

12

Vector representation of documents

𝑑) = “Tim bought
a book.”

𝑑* = “Tim is reading
a book.”

𝑑, = “ah, I know
Tim.”

𝑑- = “I saw a boy
reading a book.”

13

Summary
Vector representation for document d

• In count-based vectors,

• In TF-IDF vectors,

Feature extraction

• Mathematical abstraction: the process of transforming

document d into vector 𝒗(𝑑)

• Count-based vectors: discrete features

• TF-IDF vectors: real-valued features

14

A case study on a tiny corpora

𝑑): Tim bought a book.

𝑑* : Tim is reading a book.

𝑑, : ah, Tim is Tim.

𝑑- : I saw a boy reading a book.

• Create an index vocabulary of the words of the train

document set:

Hands on

𝑉 =

𝑤! = 𝑇𝑖𝑚
𝑤" = 𝑏𝑜𝑢𝑔ℎ𝑡
𝑤# = 𝑏𝑜𝑜𝑘

𝑤$ = 𝑟𝑒𝑎𝑑𝑖𝑛𝑔
…

* Certain stop words were ignored

15

Python practice 1

Count-based document representation.

1. Import python modules pytorch , collections and math

Hands on

2. Load dataset and define the stop-words

16

3. Clean stop-words and count word frequency

Hands on

4. Build up the vocabulary

17

Check the loaded data

Hands on

Vocabulary

Word count

18

6. Count-based document representation

Hands on

Result:

Is there a soft alternative ?

19

Python practice 2

TF-IDF vectors calculation using python.

7. Count the number of documents that contain a certain

vocabulary word

Hands on

* Problem set succeeded from python practice 1

20

8. Count the vocabulary words in each document

Hands on

Result:

9. Calculate the term frequency

21

10. Calculate the inverted document frequency

Hands on

Result:

22

11. TF-IDF vector document representation

Hands on

23

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

24

Measure vector space distance

25

Measure vector space distance

• Euclidean distance

• Cosine distance

From cosine similarity

𝑋 = 𝑥), 𝑥*, … , 𝑥. 𝑌 = 𝑦), 𝑦*, … , 𝑦.

26

Clustering

To find groups of vectors that stay relatively close to

each other, using measures of distance in vector space

(Euclidean distance as the metric)

27

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering

• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

28

K-means clustering

Iteratively assigns points to clusters based on their

distance to the centroids

Initialization: pre-specify the number of clusters 𝑘
randomly select 𝑘 points as cluster centroids

Steps:
repeat:

a. assign each point to the cluster whose centroid is the closest;
b. reassign cluster centroids (by averaging points in each cluster);

until:
the cluster contents stabilize

29

K-means clustering

30

K-means clustering

Documents
2-Means

3-Means

31

Python practice 3

Calculate Euclidean distance and cosine distance using pytorch

For our documents [𝑑!, 𝑑", 𝑑#, 𝑑$], calculate their similarity using
torch.dist and torch.cosine_similarity

Compare the distance between 𝑑! and 𝑑" , to the distance

between 𝑑# and 𝑑$, what you can see?
1. Assign the TF-IDF vector representation to the target documents

Hands on

* Problem set succeeded from python practice 1

32

2. Calculate Euclidean distance using the pytorch module

Hands on

Result:

Result:

3. Calculate cosine distance using the pytorch module

33

K-means clustering with python

2-means and 3-means clustering using Scikit.learn

Hands on

init : method for initialization, defaults to "k-means++".

n_init : number of time the k-means algorithm will be run

with different centroid seeds.

n_jobs : the number of jobs to use for the computation.

34

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification

• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

35

Clustering vs. classification

My emails

Travel Non-travel

Work

Leisure

𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 𝒅𝟓
𝒅𝟔 𝒅𝟕

𝒅𝟖 𝒅𝟗
𝒅𝟏𝟎 𝒅𝟏𝟏

𝒅𝟏𝟐 𝒅𝟏𝟑 𝒅𝟏𝟒
𝒅𝟏𝟓 𝒅𝟏𝟔

36

Clustering vs. classification

Clustering vs classification.

37

Clustering vs. classification

log 𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠 𝑑 = 𝜃⃗$%&'($ 7 𝛷 + log𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠

𝛷 =

f)
f*
⋮
f +

𝜃⃗$%&'($ =

log𝑃 𝑔𝑜𝑎𝑙 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑓𝑎𝑛𝑠 𝑠𝑝𝑜𝑟𝑡𝑠)

⋮
log 𝑃 𝑠𝑡𝑜𝑐𝑘 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑙𝑜𝑎𝑛 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 CEO 𝑠𝑝𝑜𝑟𝑡𝑠)

f) = # goal ∈ 𝑑

38

Clustering vs. classification

• Clustering (unsupervised learning)

• Do not require manually labeled training data

• All words have equal importance in a document vector

• Difficult to ensure customized vector division

• Classification (supervised learning)

• Requires training data with manual class labels

• Pick up the important words for classification tasks

• Use model parameters to define space separation

39

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

40

Vector space classification task

Finding the hyperplane

41

Linear separability

• Hyperplane: linear shape in a high-dimensional vector space.

• 2-dimensional space: line

• 3-dimensional space: plane

• dimension ≥ 3: hyperplane

• Linear separable: labeled points have a hyperplane separation boundary

• Linear models : a balance between accuracy and complexity

• support vector machine

• perceptron algorithm

Support vectors

SVM hyperplane

Margins

42

Support vector machine (SVM)

• Definition: a linear model for binary

classification in vector space

• Support vectors: points

closest to the separating hyperplane

• Margins: Support vector distances to

the hyperplane

• Training goal: find the hyperplane that

maximizes the margins

43

SVM classifier
• Defining the hyperplane

• 𝑤 is a normal vector perpendicular to the hyperplane

• On one side, 𝑤/𝑣⃗ + 𝑏 > 0; on the other side, 𝑤/𝑣⃗ + 𝑏 < 0

• Distance between vectors to the hyperplane:

𝑟 =
𝑤/𝑣⃗(𝑥) + 𝑏

𝑤

𝑤/𝑣⃗ + 𝑏 = 0

44

Parameterising the model

• There is an infinite amount of (𝑤, 𝑏) pairs to define each hyperplane

• For one unique (𝑤, 𝑏) pair, SVM chooses the scale according to training

data, requiring that for all support vectors 𝑣⃗(𝑥/)

• For any support vector 𝑣⃗(𝑥/) in the set of training examples, its distance

to the separating hyperplane is

45

SVM classifier
• Finding the hyperplane

The goal of SVM training is to find a hyperplane 𝑤/𝑣⃗ + 𝑏 = 0

that maximizes 2𝑟 = *
!

,

such that y=+1/y=-1 resides on different sides of the hyperplane.

• Equivalent to minimizing)
*
𝑤 *

• Training objective

46

Test scenarios

47

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron

• 3.2 Multi-class Classification
• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

48

The perceptron algorithm
• a linear model to find a value for (𝑤 , 𝑏)

such that y = SIGN (𝑤/𝑣⃗(𝑥0) + 𝑏) for all training examples (𝑥0 , 𝑦0)
Initialization: set𝑤 to 0 , b to 0

Steps:
repeat:

for each input 𝑥 calculate a current output 𝑧
if the output 𝑦 is different from the gold output 𝑧 :

Adjust the model parameter 𝑤 by
adding 𝑣⃗(𝑥) if 𝑦 = +1
subtracting 𝑣⃗(𝑥) if 𝑦 = -1

Adjust b by
adding 1if 𝑦 = +1
subtracting 1 if 𝑦 = -1

until:
a certain iteration number is reached.

49

The perceptron algorithm

• Algorithm

X

50

Perceptron update
• vector space interpretation

If the correct training example 𝑣⃗(𝑥01) falls on the wrong side

of the hyperplane, the perceptron update changes the

normal vector 𝑤 towards 𝑣⃗(𝑥01), and changes b by 1.

51

Numerical Interpretation

• Given a model 𝜔, 𝑏 .

• The current instance 𝑥#$has 𝜔%𝑥#$ + 𝑏 < 0.

• The new model becomes 𝜔+ 𝑣⃗(𝑥#$), 𝑏 + 1 after the update.

• The new score is

𝜔+ 𝑣⃗ 𝑥#$
%𝑣⃗ 𝑥#$ + 𝑏 + 1 = 𝜔%𝑣⃗ 𝑥#$ + 𝑏 + 𝑣⃗ 𝑥#$

& + 1, which

is larger than the old score 𝜔%𝑣⃗ 𝑥#$ + 𝑏.

• Thus 𝑥#$ will be more likely on the positive side of the new

hyperplane.

52

Batch learning vs online learning

• Batch learning algorithm

SVM defines a training objective over a full set of training data

• Online learning algorithm

Perceptron updates its parameters incrementally for each training

example

53

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

54

Solutions towards multi-class classification

• One-vs-rest approaches

• a hyperplane separates out a particular class of document from the rest

• Pairwise approaches

• More principled solutions

• One linear model

• Two views

- vector space separation

- scoring function

55

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

56

Solutions towards multi-class classification

c!

c"
c#

c"

c# c!

Multi-class classification (★ and ● are two documents, c1 , c2

and c3 are three class labels. The gold label for ★ is c1 and

the gold label for ● is c2.)

• Vector space is separated into

correct output and incorrect

output subspaces.

• the ratio between the

numbers of positive and

negative examples is

constantly (1 : |C| - 1).

57

Output-based features

Input-based feature vector :

Output-based feature vector :

NOTE : x – input, c – class

Cartesian product (count-based vector v(𝑑) for example)

𝑣⃗ 𝑑 = ⟨#𝑤), 𝑤*, … , 𝑤|3|⟩

58

Output-based features

• Document: Tim went to Amsterdam to meet Jason

• Label: Work

• Output-based features:

59

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM

• 3.3.3 Multi-class Perceptron
• 3.3 Discriminative Models and Features

• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

60

Multi-class SVM

• Training examples:

• Positive examples: v(𝑥0 , 𝑐0)

• Negative examples : v(𝑥0 , 𝒄), where 𝒄 ≠ 𝑐0

• Training objective:

• Test time find the class as

61

Multi-class SVM

• Training examples:

• Positive examples: v(𝑥0 , 𝑐0)

• Negative examples : v(𝑥0 , 𝒄), where 𝒄 ≠ 𝑐0

• Training objective:

• Test time find the class as

Too strict?

62

Linear models as scoring functions

• In a score perspective:

Given a test input 𝑥, the model finds the class label]c

with the highest score as the output:

• Final form of multi-class SVM training objective

63

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

64

Multi-class perceptron

• Goes through training examples multiple iterations

• update parameter vector by adding the feature vector of the correct

output and abstracting the feature vector of the incorrect prediction

• Algorithm 3.3

65

Multi-class perceptron

• Given a model 𝜔,

• The current instance 𝑥#$ has𝜔 / 𝑣⃗ 𝑥#, 𝑧 > 𝜔 / 𝑣⃗ 𝑥#, 𝑐#
• The new model parameters become 𝜔+ 𝑣⃗ 𝑥#, 𝑐# − 𝑣⃗ 𝑥#, 𝑧 after the

update.

• The new score difference

𝜔+ 𝑣⃗ 𝑥#, 𝑐# − 𝑣⃗ 𝑥#, 𝑧 / 𝑣 𝑥#, 𝑧 − 𝜔 + 𝑣⃗ 𝑥#, 𝑐# − 𝑣⃗ 𝑥#, 𝑧 / 𝑣 𝑥#, 𝑐# =

𝜔 𝑣⃗ 𝑥#, 𝑧 − 𝑣⃗ 𝑥#, 𝑐# − (𝑣⃗ 𝑥#, 𝑧 − 𝑣⃗ 𝑥#, 𝑐#)& < 𝜔 𝑣⃗ 𝑥#, 𝑧 − 𝑣⃗ 𝑥#, 𝑐#
• More likely being correct.

66

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron

• 3.2 Multi-class Classification
• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

67

Descriminative models

• Both SVM and perceptron are discriminative models

They work by differentiating positive examples and negative examples,

(for binary classification y=+1/y=-1; for multi-class classification c)

assigning higher scores to positive examples

• Naïve Bayes is a generative model, calculating joint probabilities of inputs

and outputs

• All the three models are linear models

68

Naïve Bayes is a Linear Model too

log 𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠 𝑑 = 𝜃⃗$%&'($ 7 𝛷 + log𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠

𝛷 =

f)
f*
⋮
f +

𝜃⃗$%&'($ =

log𝑃 𝑔𝑜𝑎𝑙 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑓𝑎𝑛𝑠 𝑠𝑝𝑜𝑟𝑡𝑠)

⋮
log 𝑃 𝑠𝑡𝑜𝑐𝑘 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑙𝑜𝑎𝑛 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 CEO 𝑠𝑝𝑜𝑟𝑡𝑠)

f) = # goal ∈ 𝑑

69

Naïve Bayes is a Linear Model too

log 𝑃 𝑐 = 𝑠𝑝𝑜𝑟𝑡𝑠 𝑑 = 𝜃⃗$%&'($ 7 𝛷

𝛷 =

𝟏
f)
f*
⋮
f +

𝜃⃗$%&'($ =

log𝑃(𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑔𝑜𝑎𝑙 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑓𝑎𝑛𝑠 𝑠𝑝𝑜𝑟𝑡𝑠)

⋮
log 𝑃 𝑠𝑡𝑜𝑐𝑘 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 𝑙𝑜𝑎𝑛 𝑠𝑝𝑜𝑟𝑡𝑠)
log 𝑃 CEO 𝑠𝑝𝑜𝑟𝑡𝑠)

f) = # goal ∈ 𝑑 f4=1

70

Discriminative model vs. generative model

• Parameter types P(c), P(w|c) and parameter instances P(sports), P(goal|sports)

• Feature vectors are assembly of parameter instances. But we can add more

parameter types into our feature vectors

𝑣⃗ 𝑑, 𝑐 = 𝑤)𝑐, 𝑤*𝑐, … , 𝑤 + 𝑐 =⇒ 𝑣⃗ 𝑑, 𝑐 = 𝑐), 𝑐*, … , 𝑐 5 , 𝑤)𝑐, 𝑤*𝑐, … , 𝑤 + 𝑐

• Advantage of discriminative models:

using overlapping features, such as word and bigram features.

71

Bigram features

• Bigram features are useful for text classification, they offer

more specific information about text classes

• Bigrams are sparser making the feature vector longer and

more sparse

72

Add bigram features

As in the example from textbook, with bigram features, the

feature vector for the sentence “Tim bought a book" in Table 3.1 is

𝑣⃗ 𝑑, 𝑐 = 𝑐), 𝑐*, … , 𝑐 5 , 𝑤)𝑐, 𝑤*𝑐, … , 𝑤 + 𝑐, 𝑏0!𝑐, 𝑏0"𝑐, … , 𝑏0 # 𝑐

73

Feature templates and instances

• Feature extraction:

A process of matching feature templates to output structures

and instantiating them into feature instances.

• Feature templates: similar to parameter type; in examples above,

there are three templates, namely c, wc and wi-1wic

• Feature instances: similar to parameter instance; e.g., c2, w1c1

74

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron

• 3.2 Multi-class Classification
• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models

• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

75

Dot-product form of linear models

A general form of a linear model :

• Given an input 𝑥, its score is computed by

Parameter vector (weight vector)

Feature vector

76

Dot-product form of linear models

A general form of a linear model :

• Given an input 𝑥, its score is computed by

Parameter vector (weight vector)

Feature vector

• Effectively same as having 𝑠𝑐𝑜𝑟𝑒 𝑥, 𝑐 = 𝜃' / 𝜙 𝑥 .

77

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron

• 3.2 Multi-class Classification
• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability

• 3.3.4 Dealing with Non-linearly-separable data

78

Separability and generalizability

• Feature engineering : the process of defining a useful set of features

• more feature reflect richer information

• better designed feature vectors allow better linear separability

• Separability

• linear separable

• dataset can be largely linear separable given proper feature definitions

• Generalization

• overfitting

• underfitting

79

Contents
• 3.1 Representing Documents in Vector Spaces

• 3.1.1 Clustering

• 3.1.2 K-Means Clustering
• 3.1.3 Classification
• 3.1.4 Support Vector Machine

• 3.1.5 Perceptron
• 3.2 Multi-class Classification

• 3.2.1 Defining Output-based Features

• 3.2.2 Multi-class SVM
• 3.3.3 Multi-class Perceptron

• 3.3 Discriminative Models and Features
• 3.3.1 Discriminative Models and Features

• 3.3.2 Dot-product Form of Linear Models
• 3.3.3 Separability and Generalizability
• 3.3.4 Dealing with Non-linearly-separable data

80

Non-linearly-separable data

Multi-class classification (★ , and ● are three documents,

c1 , c2 and c3 are three class labels. The gold label for ★ is c1

and the gold label for ● is c2, and The gold label for is c3)

c1

c1c1
c2

c3

c2

c2

c3
c3

81

Binary SVM

• Slack variables 𝜉

• Training objective

𝑤, 𝑏 = arg min
(1,3)

𝐶-
5

max 0,1 − 𝑦5 𝑤6 𝑣⃗ 𝑥5 + 𝑏 +
1
2

𝑤
"

82

Multi-class SVM

• Training objective with slack variables :

8⃗𝜃 = argmin
7

1
2 𝜃⃗

"
+𝐶(-

58!

9

max(0,1 − 𝜃⃗ ⋅ 𝜙 𝑥5 , 𝑐5 +max:;:%
(𝜃⃗ ⋅ 𝜙 𝑥5 , 𝑐))

83

Perceptron

In the case where the training data are not

linearly separable, the perceptron can still

converge to a model that gives reasonably

small numbers of training errors

84

Summary

• Vector representations of documents

• Support vector machine and perceptron

algorithms for binary text classification

• Feature representations of input-output pairs

• Multi-class SVMs and perceptions

• Discriminative models vs generative models

• The importance of features to the separability of

training data and generalization to test data

